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Reservoir Geomechanics

It is critical to understand the mechanical behaviour of a reservoir
to make optimal decision throughout the life of a field.

Stresses and deformations have potential to adversely impact
exploration activities, field development, and production
operations.

Development / production: reservoir response to production?
Impact on fluid flow at production scale

Exploration: reservoir containment and compartmentalisation?

Impact on migration, trapping
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Reservoir Compaction / Overburden Movements

Modelling/monitoring of reservoir compaction caused by depletion
allows assessing changes in reservoir performance and surface
subsidence

* 4D seismic — time shift > compaction > stress > poro-perm variation and fractures
development

- http:/www.cg.cm/
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Fractured Reservoirs

Extent, orientation, hydraulic properties
of fracture systems are essential for
well planning and reservoir management

http://www.ireservoir.com/

Cross Joints

Fractures

e [ e 5o http://pesgb.org.uk/

* Geomechanical fractures modelling
Nl * DFN with estimate of properties for simulators
wwsomaresboom  ®  Prediction of permeability
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Fault Reactivation / Top Seal Integrity
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Fault can be conduit or a barrier A >< .
* Stress state of fault j ; | Tadare Sosehatn
e Impact of pressure change R R o
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6?3 ” Effective mal stress (::rn')

Top seal integrity is affected by pressure change

* Impact of pressure change

e Critical especially when injecting
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Beyond Reservoir Geomechanics

Reservoir geomechanics to monitor and predict
reservoir properties following production
* Impact of depletion and optimisation of recovery and safety

* Focused on production time scale and reservoir extent

Exploration geomechanics models rock
behaviour at geological time scale

* Impact on migration, preservation,
compartmentalisation

Laurent | Reservoir Geomechanics | Page 7 @



Timor Sea

e Success rate: ~“10% (>20mmboe) donest2
e ~694 mmbls oil Y643 mmbls condensate
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What causes underfilled and breached traps? 1 )
e Tertiary collision 7 o4
* Trap-bounding faults reactivation N
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Timor Sea — Trap Integrity

e Plate flexure creates extensional regime
* Reactivation strain control trap breaching
* Reactivation strain is not homogeneous (partitioning)
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Can we model strain partitioning and demonstrate link to trap breaching?
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Timor Sea — Geomechanical Modelling

3D finite difference code (FLAC3D)
e Deformation > Mohr-Coulomb isotropic elastic-plastic law
e Fluid flow > single phase; Darcy’s law for an isotropic porous medium

Claudea-1

Vidalia-1

Corallina Field paleo-field

BECI
= Buang-1

Capung-1

5
paleo-field

Laminaria Field m

~—

Shear strain at the top sandstone level (reservoir)

Reactivation strains are controlled by:
e fault size (strike length and height)

e tip location and overlap, jogs and relay zones
e pore pressure condition
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Timor Sea — Geomechanical Modelling

Shear strain approximate structural permeability. High shear strains
correlate locally with leaking fault planes.

After Tchalenko, 1970 increasing fault displacement . .
] 5 ) Shear strain accumulation leads to fully
a Ay ™ ;f .
A ) connected fault zones and active pathway.
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Timor Sea — Geomechanical Modelling

Shear strain approximate structural permeability. High shear strains
correlate locally with leaking fault planes.

After Tchalenko, 1970 increasing fault displacement

Shear strain accumulation leads to fully
connected fault zones and active pathway.
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Trap Integrity Algorithm
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Summary / Conclusions

 Geomechanics is as important in Exploration than
Development/Production

e Critical to understand migration of hydrocarbon to reservoir and
trapping

* Need for calibration data
* Need for integrated workflow

e Critical to reduced exploration risks
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South West Hub - CCS Demonstration Project

. . ope
* Project feasibility stage
Western
Australia DANDARAGAN . o
e g * Potential of CO, storage in the
>
2 AGE STRATIGRAPHIC UNITS 2
Zz Ma
[}
| SO Lesueur sandstone
) 100 =3 Coolyena Osborne
31°00' z ® 5 ALBIAN Group Formation
o] 13
2 APTIAN
It} %:eede‘_;t\_nlle
< =z -ormation
e £ E Z| BARREMIAN Wambro
INDIAN | &5 § HAUTERIVIAN| MW . . .
wewerl  * Migration and leakage risk
w
1404 Z|BERRIASIAN Parmelia Group
TITHONIAN
| 1 [KIMMERIDGEIAN
5
! o OXFORDIAN Yarmagadee
32°00' A 1 CALLOVIAN Formation
Fremanke 9 w Vsh xeew
1 @ | 2| BATHONIAN 100% o
<2 o
% | 3| BAJOCIAN
'YILGARN R AALENIAN Cadda Formation
CRATON i > TOARCIAN C Coal Measures
h 2 [PLEINSBACHIAN
< -
200 w | SINEMURIAN Eneabba Formation
HETTANGIAN
RHAETIAN
2 NORIAN
Cz % Myalup Member
33°00 (o) 220 i
2 = Lesueur Top Wonnerip
%) SW Hub 2 CARNIAN sanastone o
O% model % 2 [ LaDINIAN
= 240 - AINSIAN Wonnerup Member
AN > X
g> g | scYTHIAN |
< ] = Sabina Sandstone
N EC
BUSSEL w Willespie Formation
X BUNBURY 260 g M'D'::‘;N
7 TROUGH KAZA seR
% 1 E UFIMIAN Sue Redgate Coal Measures
3 H = KUNGURIAN Group Ashbrook Sandstone
Margaret Rivere H =
34°00" = |
g ni? 280 E 7, | ARTINSKIAN Rosabrook Coal Measures
o
% g 4 o SAKMARIAN Woodynook Sandstone
50 km
———— 4 a ASSELIAN Mosswood Formation [o]
Augusta PAAAAAAAAAAANAANSAANAN]
115°00' 116°00° PRECAMBRIAN basement S
P BRI
— Fault —1— Anticline —*— Syncline R

Laurent | Reservoir Geomechanics | Page 16




South West Hub — Geomechanics

Critically-stressed faults are likely
to be conductive
e Shear stress vs sliding resistance (slip tendency)

.................

Injection affects effective stress
* PP increase facilitate failure (fault stability)
* CO, column supported before failure
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tensile ‘ shear

FraCtureS are not Captured in geomOdel fracture fracture

— 0, O — o,

e Elastic Dislocation theory

e Large fault strain > perturbed stress tensor >
Mohr-Coulomb failure > fractures

shear shear
fracture  reactivation

a—— /) S

0,(.= tang) 0, (u.= tand,)

=)

Shear stress (1)

| \ 29\ y“«
; T 7
03 Gl 5]

KAe)

T Effective normal stress (o;)

Laurent | Reservoir Geomechanics | Page 17 %



South West Hub — Geomechanics

Slip tendency

— 0.5

Fault Slip Tendency
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SW Hub - Impact of CO, Injection

3D mechanical-flow modelling to assess the stability of the reservoir
seal couplet during CO, injection and surface effects

* 1 wellinjection rate 1 to 5 Mt/a (20 years period)
 Weak and strong fault scenarios
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Summary / Conclusions

1. Geomechanics can as important in Exploration than
Development/Production

2. Critical to understand migration of fluids to reservoir and
trapping/containment

3. Need for integrated workflow

4. Critical to reduced exploration risks
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Northern Perth Basin - Trap Integrity
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* Charge system below the Triassic
Kockatea Shale

» Reactivation of Permian reservoir
fault = trap breach

e Stress state on fault planes

e Simulation of Jurassic-Cretaceous
reactivation

* Regional trap integrity framework

NW (310)




Northern Perth Basin - Cliff Head
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Sheandstrain

1.0257e-003 to 2.5000e-002
2.5000e-002 to 5.0000e-002
5.0000e-002 to 7.5000e-002
7.5000e-002 to 1.0000e-001
1.0000e-001 to 1.2500e-001
1.2500e-001 to 1.5000e-001
1.5000e-001 to 1.7500e-001
1.7500e-001 to 2.0000e-001
2.0000e-001 to 2.0636e-001

* Main Horst protected. Low shear strain
> soft-linkage

* East Ridge with high shear strain >
hard-linkage > breach




Northern Perth Basin — Risk Prediction L

* Hard linkage through Kockatea shale = key risk

¢ Shear strain control |inkage StYIG (threshold=0.1 or c. 11° shear angle)

* Variations in strength and thickness of shale
no primary risk factors s e

*  Faults strike 340N to 100N likely to fail =~ |
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* Size matters

* High incidence of breach trap due to
tendency to drill larger NNW-oriented
structures
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