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Terminologies

= LOT = Leak off pressure test
= Mud Wight = Drilling fluid pressure
= Mud Weight Window = Operating range of drilling fluid pressure inside the wellbore

= Fracture Pressure = Minimum pressure required to create a tensile fracture at the
wellbore wall by injecting fluid into wellbore

= Breakout = Shear failure of wellbore wall by applying inadequate wellbore pressure

= Formation = Lithology of wellbore/reservoir (e.g. sandstone, shale, claystone)

= Mud Loss = Significant invasion of drilling fluid into formation

= UCS = Unconfined Compressive Strength (measured in the lab on cylindrical samples)

= Reservoir Depletion = Reservoir (pore) pressure reduction due to production

= Sand Production = Producing unwanted formation sand grains with hydrocarbon

= Fault Reactivation = Slippage of fault surfaces due to pressure and insitu stress change
= Wellbore Stability = Preventing any type of collapse on the wellbore wall

= Cuttings = Expected drilling debris coming out of the wellbore during drilling

= Cavings = Unexpected chunks of failed rocks coming out of the wellbore vaw
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Geomechanical Challenges in Petroleum Fields
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Earth Stresses and Rock Mechanical Properties
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Field Data Requirements

While Drilling Data as GR, Bulk Density,
' Resistivity, Porosity, Image, Seismic
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calculate fracture leak-off pressure

Analysis of wellbore failure using Image ‘
logs and “active” geological structures

Laboratory measurements, logs,
- analysis of wellbore failure

Insitu Stress,
pore pressure

Insitu Stress,
pore pressure

Insitu Stress,
pore pressure

Rock
mechanical
properties



Rock Mechanical Properties
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Fully Integrated Subsurface Geomechanical Modelling
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Mud Weight Window and Wellbore Geometry
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Wellbore Stability
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Wellbore Failure Inferred from Cavings/Cutting

Normal drilling cuttings usually contain “bit marks”

Cavings are categorized into three basic types:

Angular Splintery Tabular/blocky
SICEIREINIE abnormal pressure bedding failure

rough, curved long, thin, flat, parallel,
surfaces concave surfaces old surfaces __,
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Wellbore Placement
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Effects of Well Trajectory on Wellbore Stability

FIP = Fracture Initiation
Pressure

High dependency of FIP to
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Finite Element Model for Sanding Analysis
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Changes of Horizontal Stresses with Depletion

Using instantaneous application of force and pressure
with no lateral strain:

L: Length (lateral extent) of reservoir
h: Height (thickness) of reservoir
AP,:Change in pore pressure

AS,,: Change in horizontal stresses

SH = Shmin = SHmax

v: Poisson’s ratio
o: Biot’s coefficient
A: Stress Path
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Stress and Pressure Evolution

The crest and flank
of the reservoir
follow a typical
normal faulting
stress path,
indicating that
normal faulting may
be contributing to
the subsidence as
well as maintaining
permeability in the
reservoir.
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Mapped Pore Pressure in 3D FEM Dynamic Model
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FE Model of Subsidence Due to Reservoir Compaction
and Pore Collapse
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There are real examples in the world that subsidence due
to reservoir compaction were observed and made severe
issues (e.qg. Ekofisk subsidence 1980s) in North Sea.
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Summary

= Geomechanics helps to understand the mechanics of interactions of
drilling fluid (mud), principal insitu stresses, pore-fluid pressure and
formation rock mechanical properties in the entire Petroleum
Engineering process.

= In drilling phase, it helps to define the safe mud weight to avoid influx
of formation pore-fluid into the well while maintaining wellbore stability
without fracturing the wellbore wall.

= During well completions, an improperly defined geomechanical model
can lead to unexpected costly problems such as sand production.

= In production phase, a coupled 3D dynamic reservoir geomechanical
model is essential for field development plans such as fluid injection to
enhance production or reservoir stimulation by hydraulic fracturing.
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