Robotic Characterisation of Pipelines in a High Energy, Near-Shore Marine Environment

SUT, Perth, 22 October 2015

Mr Nathan Kemp, Mr Isak Bowden-Floyd, Ms Jasmin McInerney, Dr Alexander Forrest Dr Remo Cossu, Mr Karl Manzer Mr Chris Coppard, Mr Andrew Hargrave

Presentation Overview

- 1. Introduction Tasmanian Gas Pipeline
- 2. Methods Robotic Characterisation
- 3. Results Feature Detection & Environment Comparison
- 4. Discussion
- 5. Conclusions

Asset Management

Grout Bag (2006)

- Millions are spent yearly on pipeline rectification through grout bags and concrete mattresses
- Tied closely to regions of high scour
- Marine growth is also an issue
- Need to identify areas of high risk

Tasmanian Gas Pipeline

- Liquefied Natural Gas (LNG)
- 320 km long
- OD 430-515 mm (excluding growth)
- Free span assessment
- Deal Island
 - Low Energy
 - 60-70 metres depth
- Five Mile Bluff
 - High Energy
 - 5-30 metres depth

5

Free Span Identification

No span, span example, Five Mile Bluff (2015)

- Acoustic shadow in contact with hard acoustic return
- Acoustic shadow separated from hard acoustic return
- Acoustic backscatter processed with Caris HIPS & SIPS

Why Autonomous Underwater Vehicles (AUVs)?

- Close Proximity
 - High resolution, regardless of water depth
- Constant Altitude
 - Maintain a shallow angle of 14° from horizontal
- Positional Accuracy
 - $\approx 0.1\%$ distance covered (1 m/1 km)
- Decoupled from Surface Motions

Gavia Scientific AUV Specifications

Length	2.5-3.0 m
Diameter	0.2 m
Depth Rating	500 m
Velocity	1.0-2.5 m/s
Range	20-30 km
Weight (in air)	80-90 kg

Inertial Navigation System (INS)	Kearfott T-24
Interferometric Sonar	Kongsberg 500 kHz GeoSwath+
Acoustic Doppler Current Profiler (ADCP)	Teledyne RDI 1200 kHz Workhorse
Side-scan Sonar	Imagenex 260/900 kHz
Optical Backscatter	WET Labs Ecopuck (470, 532, 650 nm)
Downwards Facing Camera	Scorpion 1.9 MP (3.75 FPS)

Remotely Operated Vehicle (ROV)

- SeaBotix LBV300 Observation Class ROV
 - 300 metre depth rating
 - Ultra Short Base-Line positioning
 - On-board mono & colour camera
 - Attached GoPro
- Validate detection method
- Validate span height approximation

Five Mile Bluff

- June 2014, May 2015
- Horizontal Directional Drill (HDD) exit to 5 km offshore
- Depth
 - 5-30 metres
- Mission length
 - 4.3-4.8 km
 - 45-50 minutes

Deal Island

Australian Maritime College

Yof

- February 2015
- 7km section due west of Deal Island
- Depth
 - 67-72 metres
- Mission length
 - 5.6-9.8 km
 - 4.7 2.5

Current Profiling

- Stationary ADCP (RDI Workhorse V50 500 kHz)
 - Ping every 5 seconds (0.2 Hz)
 - Averaged over 5 minute intervals

Acoustic Backscatter Results

Full burial

Partial burial

No span

High Energy Vs Low Energy

Low Energy Environment - Deal Island (2015)

- 60-70 meters depth
- 15 spans per kilometre average

High Energy Environment - Five Mile Bluff (2015)

- 5-30 meters depth
- 30 spans per kilometre average
- Wave action

http://www.tasmaniangaspipeline.com.au/offshore-map

High Energy in shallow water

- Five Mile Bluff
 - 2014 Averaged 26 spans per kilometre
 - 2015 Averaged 30 spans per kilometre
- Indicated by sand ripples
- Current Profile

29/05/2015 3:13:27 PM

- AUV Pipeline Survey
 - Collection time
 - Data processing time
 - Deployment logistics
 - Additional data collection
- Periodic Survey
 - Repeat surveys to understand pipeline scour
 - Identify high energy and low energy areas
 - Reduce number of surveys based on scour knowledge and prediction

Conclusions

- AUVs pipeline surveys
 - Geo-referencing free span length and height down to 100mm
 - Geo-reference grout bag and flanges
- ROV Validation
 - Method
 - Feature recognition
 - Span heights
- Repeat Surveys
 - Direct Comparison
 - Develop pipeline scour knowledge
 - Feed knowledge into predictions to reduce survey intervals

Ongoing Research

- Circulation Water Channel testing
- Computational Fluid Dynamics (CFD)
- Sediment Sampling

ERSITY

MAN

an Maritime College

Lee (2015)

Acknowledgments

Questions

AUV GoPro footage, Five Mile Bluff (2015)

Nathan.Kemp@utas.edu.au