

Direct on-seabed sliding foundations

(A.K.A. "slippery foundations")

Andrew Deeks

Hongjie Zhou, Henry Krisdani, Phil Watson, Ray Maujean, Fraser Bransby

Advanced Geomechanics and rewd@ag.com.au

- What are they?
- Motivation (why?)
- Design (how?)
 - Key aspects
 - Reliable geotechnical engineering
 - System integration
- Summary

- What are they?
- Motivation (why?)
- Design (how?)
 - Key aspects
 - Reliable geotechnical engineering
 - System integration
- Summary

A direct on-seabed sliding foundation

A sliding foundation

Repeated sliding over the seabed

Initial literature Cathie et al. (2008) Bretelle & Wallerand (2013)

- What are they?
- Motivation (why?)
- Design (how?)
 - Key aspects
 - Reliable geotechnical engineering
 - System integration
- Summary

Julimar field*, Apache. www.apachecorp.com

* Just a freely available field layout – no sliding foundations as far as I'm aware.

Motivation – System Example

Motivation – System Example

ΔL a function of:

- Product (e.g. temperature and pressure)
- Pipeline properties (e.g. heat transfer)
- Pipeline design (e.g. buckle design strategy)
- Geotechnics (axial & lateral pipe 'friction factors')

PLET Options

- What are they?
- Motivation (why?)
- Design (how?)
 - Key aspects
 - Reliable geotechnical engineering
 - System integration
- Summary

Key design aspects

Imposed forces

- Weight (V_z)
- Sliding resistance (H_x)
- ► Moment (M_{yy}, M_{xx})

Imposed system forces

- ► Load shedding from PLET may cause overstress.
- System analysis and interaction with pipe engineering teams vital.

- What are they?
- Motivation (why?)
- Design (how?)
 - Key aspects
 - Reliable geotechnical engineering
 - System integration
- Summary

Long term settlement focus

- Consolidation & creep
- Plastic sliding deformations
- Shakedown

Soil consolidation & creep

[Soil densification]

Soil interaction diagram

Soil interaction diagram

Soil interaction diagram

Prevented by design : minimised V/V_{ult} and soil-foundation interface strength

[analysis needs to consider VHM loading, Cyclic strength degradation, drainage, N_{eq} etc]

[Soil removal]

Soil interaction diagram

Prevented by design : minimised V/V_{ult} and soil-foundation interface strength

[analysis needs to consider VHM loading, Cyclic strength degradation, drainage, N_{eq} etc]

[Soil removal]

Cycle by cycle densification - shakedown

Cycle-by-cycle densification – Shakedown

[audience members saw a movie here...]

(DeJong et al. 2003, 2006)

τ

Shakedown predictions

Deeks et al. 2014 (OMAE, 2014)

Shakedown predictions

Number of Strokes, N_{stroke} (-)

- Cycle-by-cycle settlement assessment
- "Hardening" rule added to existing cyclic strength frameworks
- Prediction based on site specific soil element testing

Deeks et al. 2014 (OMAE, 2014)

Shakedown predictions

Influence of soil state: example settlement calculations

- What are they?
- Motivation (why?)
- Design (how?)
 - Key aspects
 - Reliable geotechnical engineering
 - System integration
- Summary

System integration & modelling

- Validate pipeline-plet-spool-structure system integrity
- Interaction & iteration between pipeline, geotechnical, and structural team is vital for successful implementation
- Reliable analysis: consider appropriate LE/ BE/ HE combinations

- What are they?
- Motivation (why?)
- Design (how?)
 - Key aspects
 - Reliable geotechnical engineering
 - System integration
- Summary

30

Summary

- Allowing direct on-seabed sliding can allow for smaller and lighter foundations which are cheaper to manufacture and install
- Design team interaction is required for successful implementation
- Shakedown (cycle-by-cycle densification) is typically the dominant cause of long-term settlement (and can be modelled on a site specific basis).
- Opportunities for design method optimisation
 - Other seabed interactions include:
 - Berm build up vs. axial movement history
 - Mobile seabeds (flexible/ moving scour protection)
 - Sand waves

Thanks for listening & thank you to AG and industry colleagues

