
What Does FLNG Mean for the Pipeline Industry?

Alan Gillen Principal Pipeline Engineer & Pipeline TA

> SUT Evening Technical Meeting Parmelia Hilton Perth 15th October 2014

Disclaimer and important notice

This presentation contains forward looking statements that are subject to risk factors associated with oil and gas businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to: price fluctuations, actual demand, currency fluctuations, drilling and production results, reserve estimates, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory developments, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates.

All references to dollars, cents or \$ in this presentation are to US currency, unless otherwise stated.

References to "Woodside" may be references to Woodside Petroleum Ltd. or its applicable subsidiaries.

Agenda

- Introduction
- Some facts and figures
- Field layout and pipeline design
- What can history tell us (FPSO analogy)
- Flow Assurance
- Conclusions

Is FLNG the end of the pipeline industry?

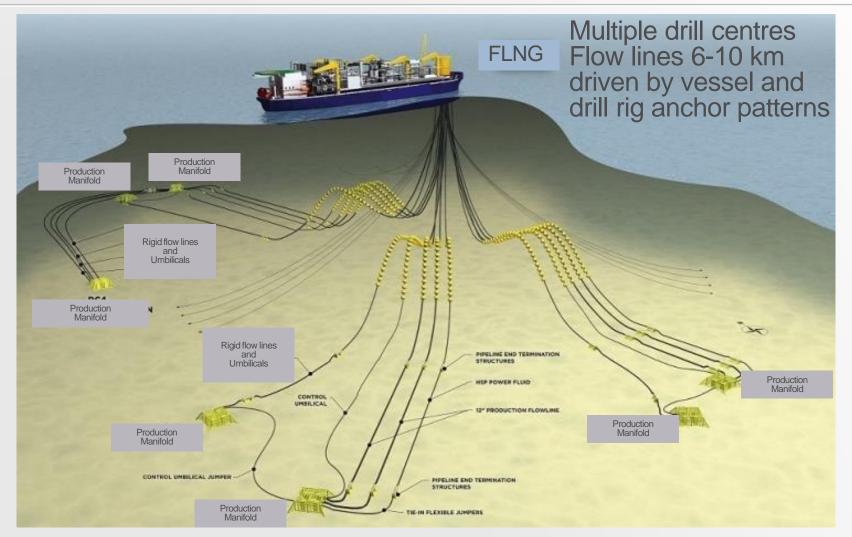
With the advent of FLNG, the need for new large onshore infrastructure and therefore long large diameter trunklines to connect to them has changed.

This has lead many in the subsea world to declare that the local pipeline industry is now longer needed.

Whilst the demand for large diameter pipelines may change, the number and complexity of the future infield flow lines for FLNG will increase.

FLNG Technology

Pipeline Design


Gas reservoir parameters offshore WA:

- Temperature: 100°C 160°C
- Pressure: 230 300 Bar *
- Water depth: 100 1500m
- Medium to high CO₂ levels
- Low H₂S
- Waxy condensates
- Design Life 25-40 years

* Design Pressure may be as much as 690 Bar driven by MEG (monoethylene glycol) injection pressures.

Possible Subsea Layout

Potential Design Issues

Issue	Flow assurance	Material selection	Buckling / Walking	Installation
High temp		Material de-rating	Larger driving force More Transients	
Short flow lines			Walking sweet spot	
High pressure		Thicker Pipe		
Corrosive		CRA lined pipe		🖋 CRA Welding
Waxy				
Single train LNG	Reliability —	,	More shutdown/ start-ups	

Short, hot, high pressure flow lines with medium to high CO₂ levels and waxy condensates!

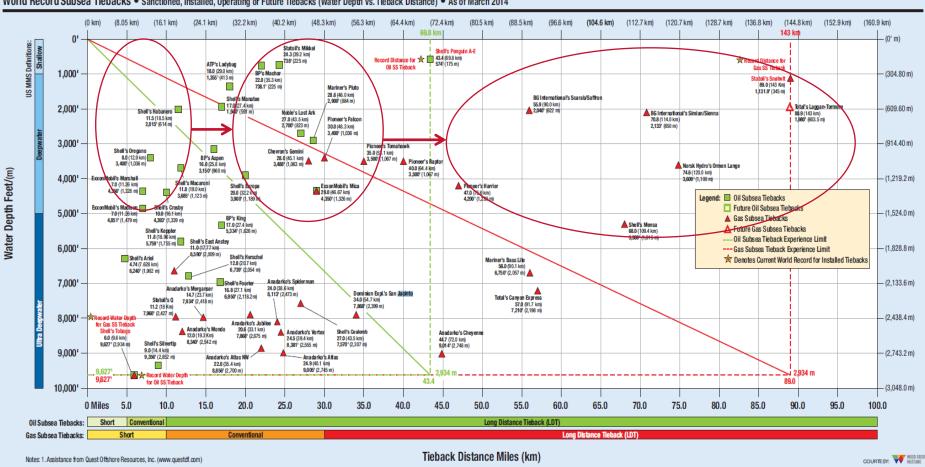
Current Flexible Riser Technology: •Temp 130°C < max temp •Pressure. ID dependent

⁰ T	Project Name	Operator	Field Location	FPSO Mooring	Riser Concept		
	Girrasol	Total	WoA	spread	Bundle Tower Riser	Ŀ	
20	Kizomba	ExxonMobil	WoA	spread	FSHR	1-	
a)	Bonga	Shell	WoA	spread	SCR] .	
e (MPa)	Erha	ExxonMobil	WoA	spread	SCR]-	
Max Allowable Operating Pressure	AKPO	Total	WoA	spread	SCR		
ating F	Could SCR's be added to the pipeline mix ?						
Opera	Barrowson	1 - 4 - 0 - 1 - 0	1910211	opreus	Riser		
wable	Caratinga	Petrobras	Brazil	spread	Flexible Riser]_	
OILA XE 100 -	Marlim Sul	Petrobras	Brazil	Turret	Flexible Riser		
ž loo	Cascade & Chinook	Petrobras America	GoM	Turret	FSHR]_	
120 -	BC 10	Shell	Brazil	Turret	Lazy Wave SCR		
	Gendalo & Gehem	Chevron	Offshore Indonesia	spread	SCR]	
140 두	Leviathan	Noble	Offshore Israel	spread	SCR	ed	
2 - Inside Diameter (in)							

What Can History Tell Us (FPSO analogy)?

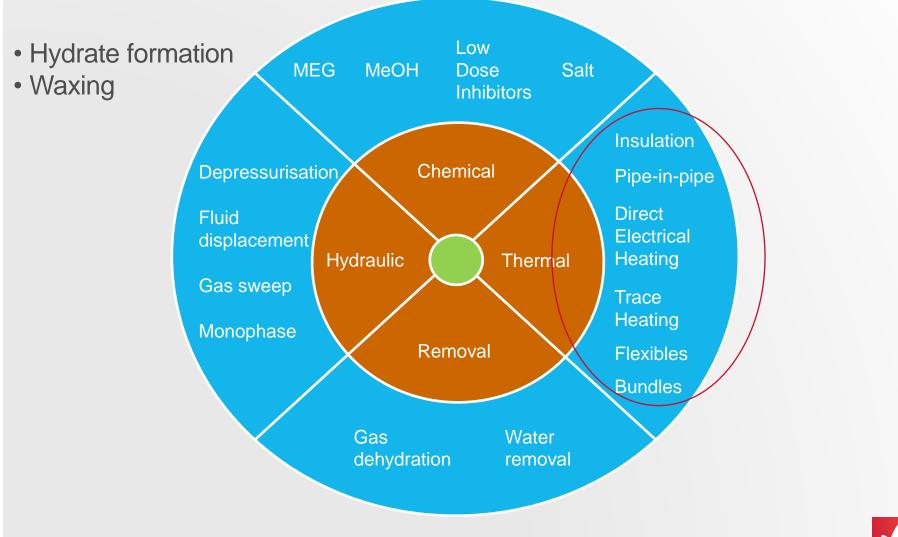
• First FPSO installed in 1985 in 50 m water depth, 10-15 wells

• Currently we have over 200 FPSO's in up to 2000+m water depth, 40-50 wells

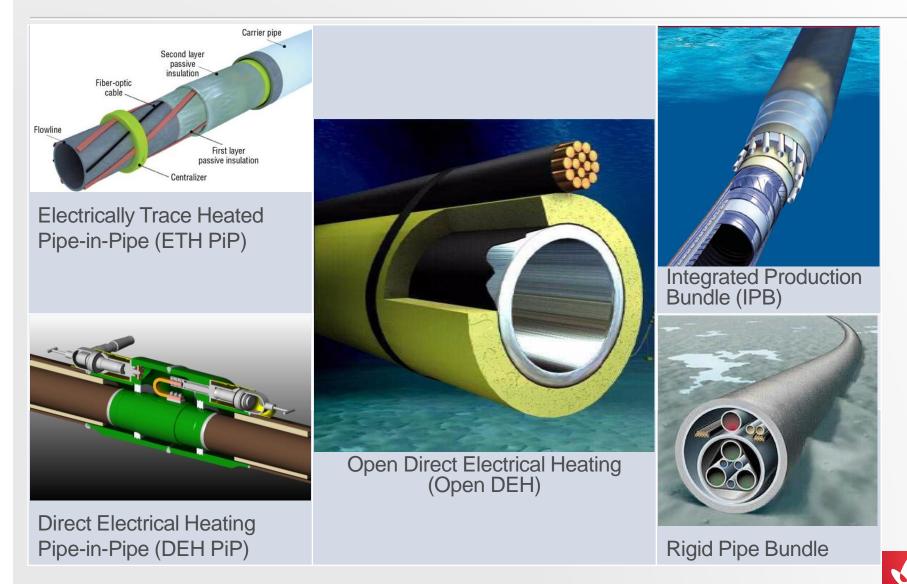

• Initially fields designed with short step out distances i.e. 5-10 km

• Current tieback distances are now 20-40+ km

Will FLNG head the same way?


Subsea Tieback lengths

World Record Subsea Tiebacks • Sanctioned, Installed, Operating or Future Tiebacks (Water Depth vs. Tieback Distance) • As of March 2014



Flow Assurance Issues & Available Mitigation Techniques

Active Flowline Heating (AFH) Technologies

15th October 2014

13 W

Closing Comments

Pipelines servicing FLNG facilities will have various design challenges due to the nature of the product, the field layouts, design life and location.

As FLNG facilities are deployed the subsea pipeline industry will have to develop and evolve to continue to support these field developments.

FLNG is not the end of the subsea pipeline industry but a new era which will require innovative thinking and new technologies to solve the potential design issues.

Questions ??

