

THE 4Gs IN PRACTICE: INVESTIGATING HOW THE 4Gs ARE APPLIED IN THE OIL & GAS INDUSTRY

Society for Underwater Technology, Evening Technical Meeting 14 AUGUST 2013

GEOPHYSICS & PORT DEVELOPMENTS – EXPLORING MARINE & TRANSITION ZONES

Dr Kathleen McMahon

Senior Geophysicist, GroundProbe

GroundPr@be

decision confidence[™]

SUMMARY

- WHY USE GEOPHYSICS?
- MARINE GEOPHYSICAL TECHNOLOGIES
- THE PROS & CONS
- EXAMPLE RESULTS & CASE STUDIES

decision confidence[™]

WHY USE GEOPHYSICS?

Geophysics is a useful tool for pre-development investigations in the marine environment and within the onshore/offshore transition zone

- What? Dredging, Piling, Causeways, Reclamation, Pipelines
- When? Pre-planning, Pre- or post-drilling activities
- Where? Near shore (shallow) marine, Land, Transition zones

GroundPr@be

WHY USE GEOPHYSICS?

- Why? Geophysics can assist with:
 - Determination of suitable locations for berths, turning pockets and approach channels
 - Identifying dredgeable areas
 - Providing geotechnical or geohazard information e.g. impediments to dredging such as hard ridges
 - Providing layer information & depth to bedrock

WHY USE GEOPHYSICS?

Products:

- Layer mapping of geophysical boundaries along transects, and 3D surface modelling
- Correlation with lithology data (borehole/vibrocore)
- Geophysical unit characterisation geophysical properties, thickness/depth, dominant lithologies
- Volume estimation

MARINE GEOPHYSICAL TECHNOLOGIES

- Marine Surveying in Shallow (<30 m) Water:</p>
 - Bathymetry & Side Scan Sonar
 - Magnetics
 - Seismic Reflection
 - Seismic Refraction
 - Electrical Methods
- Transition Zone & Land-based surveying:
 - Seismic Methods Refraction, MASW, Reflection
 - Electrical Methods Electrical Resistivity Imaging (ERI)
 - Electromagnetic (EM) Methods Shallow EM
 - And more...
- Airborne Electromagentics

THE PROS & CONS

TECHNOLOGY	TYPE OF METHOD	POSITIVES	NEGATIVES
Seismic Reflection (CSP – Continuous Seismic Profiling)	Seismic	Provides structural information (layers, depths) Fast acquisition	Does not produce hardness information
Seismic Refraction	Seismic	Established correlation between P-wave velocity and dredgeability	Cannot detect velocity inversions (low velocity layers between higher velocity layers)
MASW (Multi- channel Analysis of Surface Waves)	Seismic	Can detect velocity inversions	Horizontal resolution reduced Frequency- dependant
Resistivity	Electrical	Maps porosity and clay variations	Does not produce hardness information Low resolution

THE PROS & CONS

TECHNOLOGY	TYPE OF METHOD	POSITIVES	NEGATIVES
Magnetics	Potential Fields	Detects iron (metallic objects) Can map magnetic geologic units	Does not provide depth discrimination
Side Scan Sonar	Sonar	Detects seafloor features e.g. sand structures, coral, obstructions	Seafloor surface only
MBES (Multi-Beam Echo-Sounder)	Bathymetry	Provides detailed bathymetry	Seafloor surface only
SkyTEM	Airborne Electromagnetics	Fast coverage	No hardness information Low resolution

MARINE SEISMIC

Seismic Reflection

MARINE SEISMIC

Seismic Refraction vs MASW

Defining layers & stiffness/velocity variations

<u>GroundPr@be</u>

Defining layers & stiffness/velocity variations

GroundPr@be

decision confidence[™]

Dredgeability

P-WAVE VELOCITY	DREDGING CHARACTERI STICS	COLOUR (IN IMAGE)	
1530 – 1900	Easily dredged with a TSHD ¹	GREEN	
1900 – 2500	Easily dredged with a CSD ²	YELLOW	
2500 – 4000	Dredge with difficulty with a CSD ²	ORANGE	
> 4000	Blasting required	RED	

¹TSHD - Trailing Suction Hopper Dredger

²CSD - Cutting Suction Dredger

decision confidence[™]

3D Surfaces, Volumes, Layer Characterisation

decision confidence[™]

3D Surfaces, Volumes, Layer Characterisation

3D Surfaces, Volumes, Layer Characterisation

SHALLOW MARINE AND NEAR SHORE RESISTIVITY

Onshore & Offshore Electrical Resistivity Imaging

ERI Resistivity (ohm.m)

AIRBORNE ELECTROMAGNETICS OVER MARINE-LAND TRANSITION

Mapping clays & fresh vs saline groundwater

decision confidence[™]

THANK YOU

decision confidence[™]

