

Monitoring Multiphase Flow via Earth's Field Nuclear Magnetic Resonance

Keelan O'Neill

University of Western Australia School of Mechanical and Chemical Engineering

SUT Subsea Controls Down Under

20th October 2016

Fluid Science & Resources

www.fsr.ecm.uwa.edu.au/

Motivation for research

The future of oil and gas production

- Development of deeper offshore fields and marginal fields
- Increased produced water
- Increased subsea processing

Objectives of flow metering

- Measurement of phase fractions
- Measurement of phase velocities
- Flow regime identification

Multiphase flow meter technologies

Gamma-ray

Collimator

source

Downstream transducer

Ultrasonic

emission

Upstream transducer

Common measurement principles

- Gamma ray attenuation
- Electrical impedance measurement
- Ultrasonic measurement systems

Advantages of nuclear magnetic resonance

- Non-invasive measurement
- Non-radioactive technology
- Flow regime independent

Flow

direction

Detector

Flow

Nuclear magnetic resonance

Summary of nuclear magnetic resonance (NMR) magnetic field strengths

Nuclear magnetic resonance

Basic classical mechanics description

1. Align nuclei (¹H atoms) with magnetic field (polarisation)

2. Apply radio frequency pulse

The Earth's field NMR flow meter

Model for NMR signal

Tikhonov Regularisation

Tikhonov regularisation

- Least squares fitting method
- Allows complex models to be fit to experimental data

Real image

Image with noise

Reconstructed image

M. Bertero and P. Boccacci, Introduction to inverse problems in imaging. 1998, CRC Press.

Single phase velocity analysis

Experimental conditions

Single phase water flows at 4 - 52 L/min (0.08 - 1.15 m/s)

Velocity comparison

Two pipe analysis

Gas/liquid analysis

Video analysis

region

EFNMR

Detection

Coil

Flow regime identification 80 NMR Signal [µV] 60 Stratified flow 40 Slug flow 20 0 10 20 30 50 40 0 Time [s]

Video analysis

Velocity and holdup determination

Holdup analysis comparison

Two phase velocity analysis

Conclusions

 Can accurately measure and model the FID signal of a moving fluid through the flow metering system

 Can determine the velocity probability distribution of liquid moving in the system via Tikhonov regularisation

• Able estimate the liquid velocity and holdup over time for stratified and slug flow

Future work

- Analyse fluid flow in further air/water flow regimes
- Incorporate oil into flow metering system
- Apply dynamic nuclear polarisation for signal enhancement
- Fully develop analysis techniques to be able to interpret three phase flow (oil/gas/water)

Hogendoorn, J., et al., Magnetic resonance multiphase flowmeter: measuring principle and multiple test results, in Upstream Production Measurement. 2015: Houston.

Acknowledgements

Supervisors

Michael Johns, Einar Fridjonsson and Paul Stanwix

Final Year Project Students Adeline Klotz and Jason Collis

Thank you for your attention!

Questions?

Tikhonov regularisation

Comparison to a theoretical model

Theoretical turbulent power law distributions

