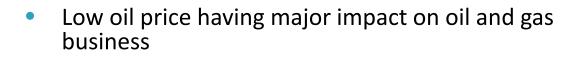


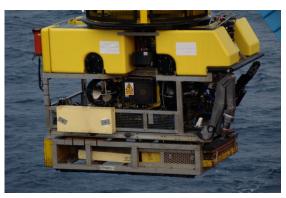
Predictive Subsea Integrity Management: Effective Tools and Techniques


The Leading Edge of Value-Based Subsea Inspection

1st November Aberdeen 2017


www.astrimar.com

Background



- Operators need to significantly reduce OPEX
 - Looking for better strategy for managing subsea assets which will reduce costs
- Opportunities to decrease OPEX
 - Inspect less often increase time between inspections
 - Inspect fewer items only inspect items at risk of degradation
 - Inspect items more rapidly less time on station
 - Remote condition monitoring rather than ROV inspection
 - Increase time between failures improve reliability
 - Decrease time to repair or replace
 - Use lower cost vessels
- New technologies needed to reduce operating costs without compromising asset integrity

- Breakdown
 - Fix when broke
 - Expensive

Preventive

- Scheduled inspection and replacement
- Less suitable for permanently installed subsea hardware

Predictive

- Monitor equipment and process conditions
- Predict and prevent

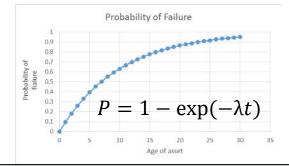
- Unscheduled interventions
- □ Process and service disruptions
- □ High maintenance costs

- Regular interventions
- Equipment inspection
- □ Replacement before failure

- $\hfill\square$ Predicted best time for intervention
- □ Detect & correct root causes of failure
- Deliver inherent plant reliability

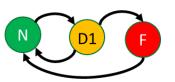
Fundamental Questions

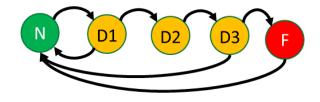
- When will an equipment item fail?
- How soon before we need to replace or repair the item?
- How often should we inspect or test?
- Important to understand
 - How equipment items degrade and fail (mechanisms)
 - How fast degradation progresses and leads to failure
 - How much degradation can be tolerated before action needed to prevent failure
- Inspection, monitoring and testing can be used to indicate:
 - Actual state/condition of equipment to support decision making
 - Changes of state/condition over time (if monitored)
- Currently industry approach
 - Mainly to detect current state/condition
 - Not making best use of this data to forecast asset life


Difficult to forecast these

Predicting Time of Failure

- Conventional reliability based on two states: working and failed
- Historically simple reliability models used to forecast probability of failure with time
 - $-\lambda$ is the asset failure rate MTTF = $1/\lambda$
 - t is the age of the asset

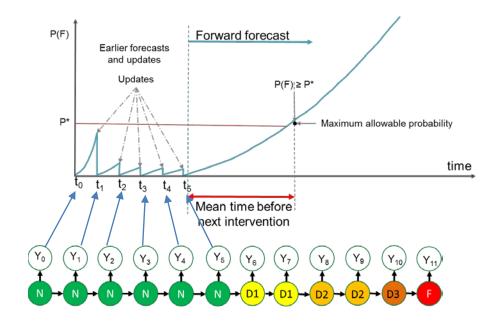



- Failure rate assumed constant
- Typically obtained from data bases e.g. OREDA
- Time of failure is "statistical" assumed random
- Generic and based on population of observed failures from different installations

How do we move forward?

- Fundamentally 2 states not enough to manage asset reliability and integrity
- Need additional states working, degraded, failed

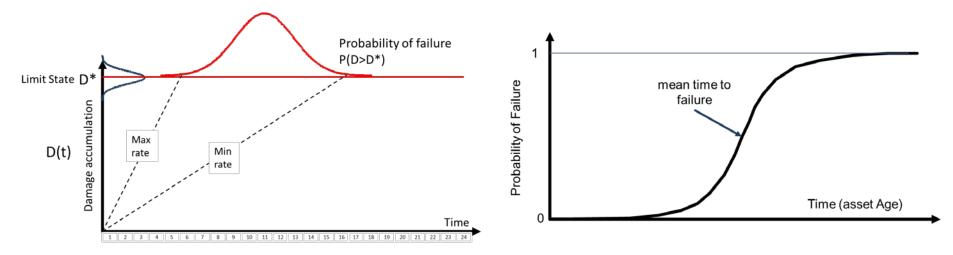
Advanced Predictive Analytics and Tools



- Forward prediction methods
 - Markov chains state space models
 - Damage accumulation and limit state models
 - Reliability growth analysis
- Predictive models must be realistic representation of the degradation and failure mechanisms of monitored equipment
- Monitored data must be relevant to the actual degradation/failure mechanisms of monitored equipment
- Tools for using and analysing observed data
 - Hidden Markov models with Bayesian updating
 - Bayesian updating of damage accumulation and limit state models
 - Machine learning from observed data
 - Supervised and unsupervised learning

Hidden Markov Model

- State is hidden
- State revealed by observable Y_i
 - Monitored data
 - Inspection data
- Y indicates if state is
 - N (working as good as new)
 - D (degraded) or
 - F (failed)

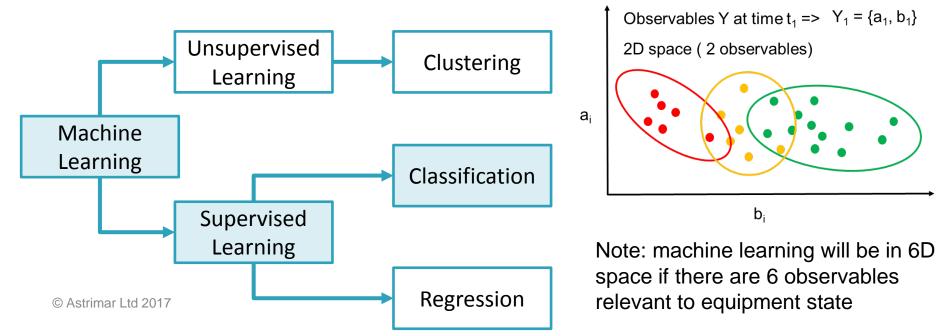

Markov chain

- Forward forecast by state space Markov model
- State probability updated using advanced analytics e.g. Bayes or ML algorithm
- Time to next action = time to reach maximum allowable probability for that action e.g.
 - Time to next inspection
 - Time before need to replace or repair
- Predicts time to reach unacceptable damage state

Damage Accumulation - Limit State Models

- Damage accumulates from time t=0 until failure
- Damage rate varies with time (e.g. corrosion, erosion, wear, fatigue)
- Failure occurs when damage D exceeds allowable damage D*
- For example: D* can be corrosion allowance or wall thickness

- Can be used where there is a well understood failure mechanism e.g. corrosion
- Predictions based on historical degradation rate data and equipment design
- Can be updated given actual measurements of degradation rate


© Astrimar Ltd 2017

Machine Learning Techniques

b

- Machine Learning a powerful tool for analysing data
- Applicable to analysis of monitored data or inspection data
- A number of different algorithms available e.g.
 - Supervised learning commonly used
 - Train the model using classification algorithm to recognise which observables indicate when state is working, degraded or failed

Practical Application Examples

Subsea Valves

- Signature test data
 - Time to close/open
 - Actuated hydraulic volume
- Predictive Models
 - Use of observed test data to update and forecast degraded and failed states
 - Integration of individual valve forecasts into system isolation model

Pipelines

- Typical external observables from ROV inspection
 - Coating condition
 - Anode wastage
 - Visible corrosion
 - Leaks
- Predictive Models to update and forecast degraded and failed states
 - Include equipment states and barrier states

Summary and Conclusions

- Currently not enough use made of existing data collected as part of the Operators Integrity Management
- Existing IM data are limited in scope and quality
- Significant amount of subsea integrity data based on inspection
- Operators looking to make more use of remote condition monitoring approaches that rely less on expensive vessels
- Advanced Predictive Analytics applicable to any subsea asset or asset barrier (e.g. CP, coatings, inhibition systems) that can be monitored or inspected
 - Valves (trees, manifolds, down hole safety, chokes)
 - Jumpers, pipelines, flow lines
 - Control system and umbilicals
 - Pumps and subsea processing