

Machine Vision based Data Acquisition, Processing & Automation for Subsea Inspection & Detection

1st Nov 2017 SUT Presentation: The Leading Edge of Value Based Subsea Inspection

Adrian Boyle CEO

Introduction

- Cathx Ocean Founded in 2009
- To deliver subsea Machine Vision automation subsea
- What we do
 - Hardware: Image acquisition with measurement
 - "if you've gone to the trouble of going there, you may as well collect the best data you can"
 - Software : Machine Vision systems
 - "By collecting the best data you can, it is possible to automate the analysis of that data"

To deliver efficiency

- Reduce Vessel cost
 - Speed or ROV or AUV (pipeline)
 - Time to acquire data (Infield)
- Increased Autonomy
 - AUV operations
 - Shore launch AUV
 - Resident AUV
- Automation
 - Automated processing
 - Auto eventing and measurement
 - Automated vehicle operations

Data quality

ROV visual inspection

- ROV systems for pipeline -historically at 0.5 Knots
- Driver good quality video.
- Moving at higher speed introduced problems
 - Motion Blur: Moving at speed higher than 0.5 knots
 - Range : usually < 3m
 - Area of lighting: Low power sources, long exposure times.
 - Image quality: Poor sensitivity, poorimage quality forced video rather than stills.

Stills (or sync'd video)

High speed pipeline survey: Image Quality

MMT Image Mosaic

Courtesy of MMT Sweden

- High Speed Stills (5 knots at 5m working distance)
 - UHD resolution stills up to 5 per second or HD stills up to 30 per second
 - Short exposure strobe lighting to allow working distance 5m and greater
 - Typically acheives 0.8mm to 1.5mm pixel resolution

- Mosaic tool
 - Allows uniform high resolution 2D mosaics
 - With Mosaic compression off camera
 - Data volume control

High Resolution Imagery

3D Photo Models

Courtesy of Black Sea M.A.P. & MMT Sweden

Infield Structures - Stills

Back to InlineTee

Local position from Images

- First step in Photogrammetry
 - Fast
 - Provides relative position of ROV camera

Local position from Images

Co Registered Data – Images and lase

Multiple data at a single location

- System Architecture for AUV and ROV systems
 - Strobe Lighting and interleaved laser allows operation to 5 knots
 - Precision Time stamp on all Laser and Image data
 - Nav data and other sensor inputs stored in EXIF (through camera inputs)
 - Up to 50 laser Lines per second
 - UHD and HD images
 - Designed for full automation of data processing (coming up)

AUV Dual Mode configuration

• AUV

- UHD stills at 7 FPS or HD stills up to 30 FPS
- 300,000 lumens of light allows > 4 knots
- Laser and lighting synchronised to sub ms
- Spatially and temporally co-registered

Work Class and High speed ROV configuration (Dual swath)

Pipeline inspection (laser)

Speed: 4 knots

7.4 km/h

5 m altitude

Laser 3D Models

Photogrammetry with laser based measurement

Co Registered Data – Cross calibration

- Two cameras imaging the same scene
 - Allows post acquisition calibration for environmental factors
 - For AUV or ROV
 - Example shows port and starboard

Reconstruction of Structures without Nav

Reconstruction of pipeline sections without nav

Automation – Machine Vision (& Learning!)

- An AUV in commercial operation can collect 300GB of data per day
- Dual source data acquisition is the basis for robust automation
 - Automation must be reliable and trusted
 - To achieve 100% automation requires real time data integrity checks
 - This requires 3D laser data Plus co-registered image data

Two sources of data with on board data validation ensures post processes can be automated before the vessel leaves the area

Image Based Machine Vision

Co-registered Image and Laser data

- System Architecture for AUV and ROV systems
 - Strobe Lighting and interleaved laser allows operation to 5 knots
 - Precision Time stamp on all Laser and Image data
 - Nav data and other sensor inputs stored in EXIF (through camera inputs)
 - 50 laser Lines per second
 - UHD and HD images
 - Designed for full automation of data processing (coming up)

AUV – Robust Automated Eventing (2018)

- Allows large volumes of data to be reduced to events quickly!
- Effective range based statistical analysis of 3D laser
- Output is images and 3D data that can be reviewed efficiently
- -When combined with 2D co registered data provides MV reliability

Event detection

- Laser based eventing
- For laser events we have the corresponding image section
- This enables for full auto eventing
- And reduces the data volumes to a few %

Spatial registration of laser and images

- 3D machine vision
 - Cross sectional geometric analysis

Source

- Freespans and Circularity
- Testing OOS Q1 2018

Pipeline Cross Section

_ 🗆 🗙

3D Measurement Tools (2018)

Thank You!

For more information please contact :

Adrian Boyle Email: <u>aboyle@cathxocean.com</u> Phone: +353 45 252786