

Latest Evolution of Vessel Lay Equipment, to Meet the Challenges of Deepwater Installations

SUT Perth, 14th February 2018

- 1. TechnipFMC Fleet
- 2. Skandi Africa:
 - Crane
 - Lay Spread

TechnipFMC Fleet

REEL-LAY VESSELS

S-LAY VESSELS

DIVE SUPPORT VESSELS

LONG TERM CHARTERED VESSELS

RLWI

CONSTRUCTION VESSELS

Plus 8 purpose built vessels for the Brazilian Market:

Skandi Vitoria* Skandi Acu*
Skandi Niteroi* Skandi Buzios*
Coral Do Atlantico Skandi Olinda*
Estrela Do Mar Skandi Recife*

*JV with DOF

Skandi Africa Overview

Skandi Africa

A state-of-the-art deepwater construction support vessel

► Length: 160.9 meters

► Speed: 12 - 16 knots

Accommodation: 140 people

- ▶ DP3 and ICE-1B class notation for harsh environments
- ▶ 900 Te AHC main crane, 150 Te AHC knuckle-boom crane
- ▶ Large 2,700m2 main deck and 3,500Te under deck storage
- ▶ 2 TXLX ROV systems capable of operating to 4,000 m
- ► 650 Te Tiltable Lay System Tower (TLS) for flexible lay operations product diameter from 50 to 630mm

50-630 mm

Maximum product diameter range

650 Te

Tiltable Lay System onboard vessel

3500 Te

Under Deck Carousel

A fully programable system:

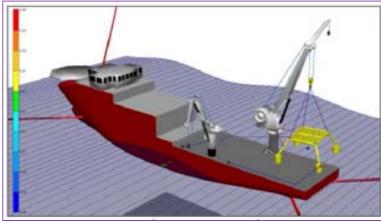
At the push of a button

Main Stages of a Subsea Lift improved:

- Vessel to Vessel Lift Mode
- Splash Zone Mode
- Subsea Land-out Mode
- Deep Water Lowering Mode

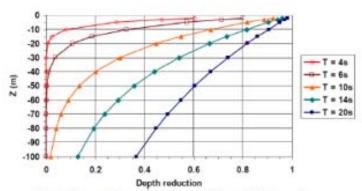
Increased workability & reduce strain on system

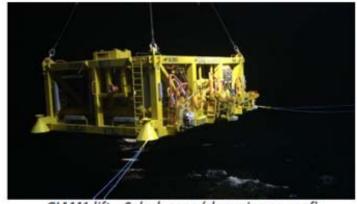
1) Vessel to Vessel Lift Mode


- Main considerations:
 - Personnel Safety during rigging
 - Structure Integrity during ops
 - Structure control in-air

Outcome:

- Account for vessel to vessel relative motions
- Remove 'Snap-load' risk
- DAF reduced / optimised lifting configurations
- Increased operability
- Increased safety

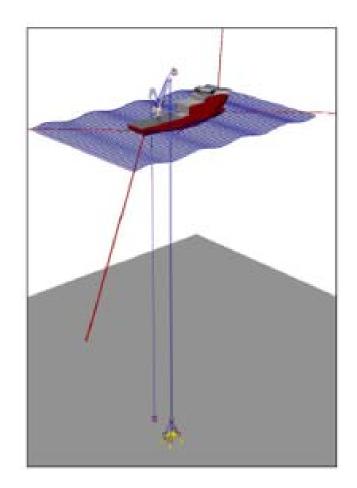




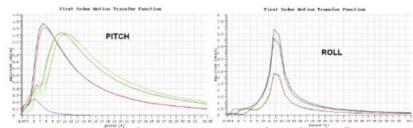
2) Splash Zone Mode

- Main considerations:
 - Maximise wave kinematics
 - Risk of slack-lining
 - Hull clashing
- Outcome:
 - Reduced exposure to slack slings
 - Increased vessel operability [Hs]

Variation of wave kinematics with depth



GLM41 lift - Splash-zone (slamming on roof)


3) Subsea Land-out Mode

- Main considerations:
 - Structure designed for specific landing velocity [~0.5m/s]
 - Suction loads risk / overloading, landing on soft seabed
 - Structure position guidance
- Outcome:
 - Seabed recontact risk mitigated
 - Remove overload risk, crane attached to seabed
 - Increased vessel operability [Hs]


4) Deep Water Lowering Mode

- Main considerations:
 - Crane slewed forward & inboard
 - Resonance*
- Resonance Mitigation:
 - Natural period of resonance shifted outside wave period range
 - Traditional route: Pennants & PHC unit

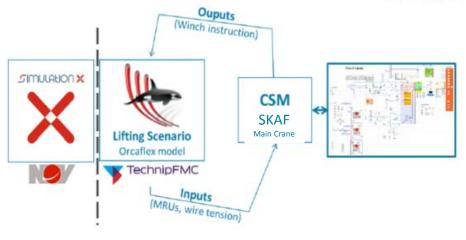
Typical RAOs construction vessel - Pitch and Roll

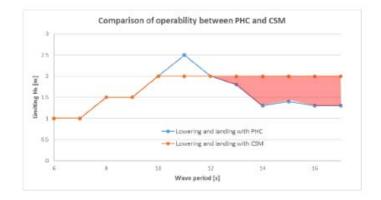
Block 31 - Resonance Issue Experienced

*Resonance – Excitation of the lifted package caused by the natural frequency of the hoisting system being near the wave period – generally more of an issue in deeper waters

Crane Simulation Modelling [CSM]

- Crane manufacturer interface
- Orcaflex lifting scenario
- Fed into complex model


Resonance Mitigation Benefits

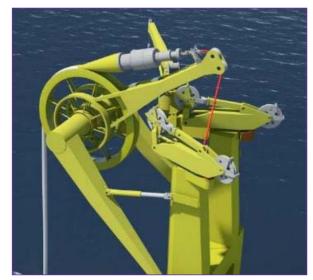

- PHC units removed
- Reducing risk of crane damage
- Reduced vessel time: ~ €1.0M saving on 1st Project
- Significant operability increase 1.0m Hs to 2.0m Hs

CSM cost only €15k

A Drive for Innovation

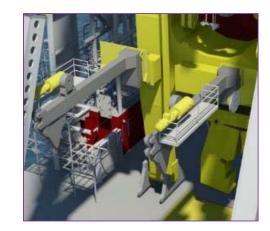
- Changing infrastructure, remote, deeper waters
- Upscaling and improved handling
- ▶ Deeper water & Larger equipment = *Higher top tension*
- Safety and structural integrity consideration:
 - Longer, heavier & more end terminations
 - Improved efficiency, repeatability, safety

Efficient, safe installation = higher lay speed

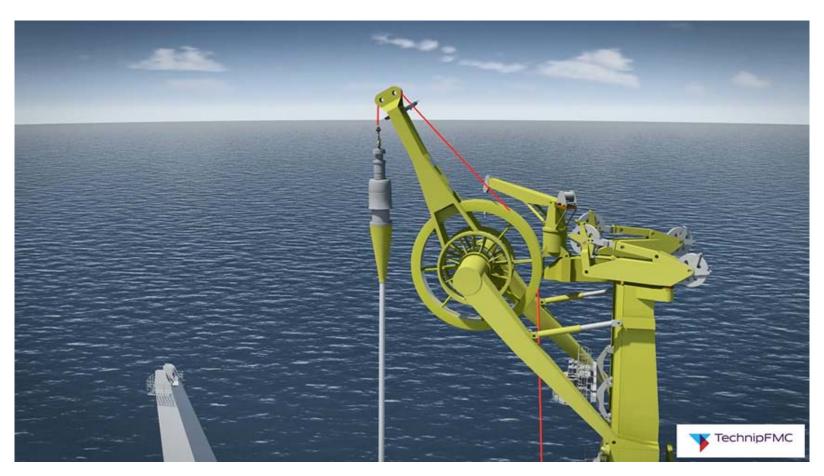


End Handling System [EHS] – 1st & 2nd End

- Improved efficiency, control & safety
- Chinese fingers, loose rigging & multiple winches removed
- Driven rigid arm, rotated around aligner wheel
- Hoisting pipe termination from deck latching system
- ▶ 180° rotation into firing line
- Fully reversible for recovery
- Horizontal motions fixed


Retractable Dual Tensioners:

- Retract out of firing line when not required
- Full ramp height available


'XYZ' Hoisting Beams:

- Conventional hoisting beams setup set at fixed pitch
- Movable beams increase versatility & reduce rigging time
- Beams skid transversely & independently
- Heavy loads transported from side of ramp to firing line

Successfully implemented on.....

Total Moho Nord [Congo] - 1200mwd

- Large EPCI
- Over 21km of flexibles
- Associated Structures, Jumpers, etc

Total Kaombo [Angola] – 1900mwd

- ▶ 400 day SKAF campaign
- ▶ 500+ Team in 17 TechnipFMC centres
- ▶ 50+ Rigid Spools & Jumpers
- 18 Dynamic & Static Umbilicals
- 14 structures [manifolds & piles]

Thank you

