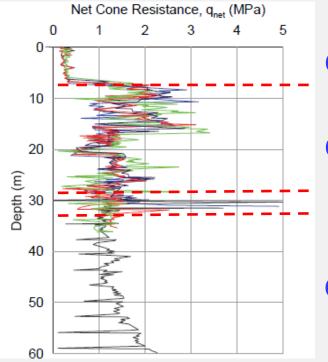


Installation Response of 5.5 m Diameter Driven Piles in Carbonate Soil – The Ichthys Development N.P. Boylan – NGI, Perth, Australia A. Roux & J.L. Colliat-Dangus – Total, Paris and Pau, France A. Sato – Inpex Australia, Perth, Australia

Ichthys Project, Offshore Australia

INPEX


- 220 Km north-west of Western Australia in 250 m WD
- Central Processing Facility (CPF) and Floating, Production, Storage and Offtake (FPSO) facility, and subsea development
- Facilities designed to survive 10,000yr cyclonic event
- Facilities moored to seabed by 28 (CPF) and 21 (FPSO) driven anchor piles

Soil Conditions

NG

OTAL

INPEX

Carbonate SILT / MUD

Carbonate Silty SAND / SAND

LIMESTONE (Calcarenite)

Carbonate Silty MUD / Sandy MUD

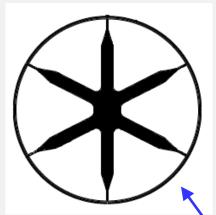
Anchor Piles – Key Features

INPEX

Diameter = 5.5 m

- Embedded Length = 48.0 m (63.6 m total)
- **7** Padeye = 3.0 m (CPF) / 3.5 m (FPSO) b.m.l.
- Submerged Weight = 400 t (CPF) & 426 t (FPSO)
- Dynamic freefall arrestors
- Static freefall arrestors

Anchor Piles – Key Features

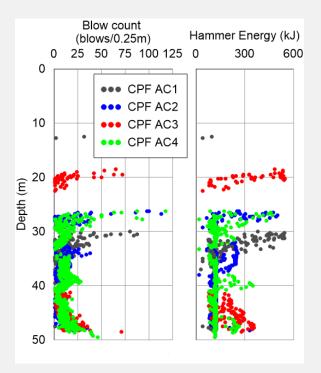


INPEX

- Diameter = 5.5 m
- Embedded Length = 48.0 m (63.6 m total)
- **7** Padeye = 3.0 m (CPF) / 3.5 m (FPSO) b.m.l.
- Submerged Weight = 400 t (CPF) & 426 t (FPSO)
- Dynamic freefall arrestors
- Static freefall arrestors

Vent area = $1.2 \text{ m}^2 - 1.7 \text{ m}^2$ To restrict pile freefall to maximum of ~1 m/s

Anchor Piles – Key Features

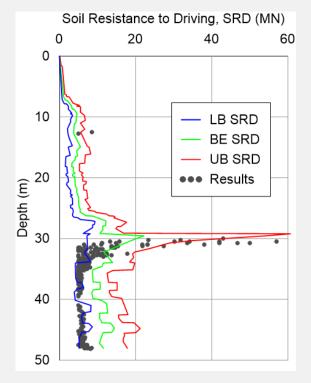

C-S through pile at base of cruciform

INDEX

Diameter = 5.5 m

- Embedded Length = 48.0 m (63.6 m total)
- → Padeye = 3.0 m (CPF) / 3.5 m (FPSO) b.m.l.
- Submerged Weight = 400 t (CPF) & 426 t (FPSO)
- Dynamic freefall arrestors
- Static freefall arrestors
 - Located to be above Calcarenite layers at
 - final penetration
 - Additional bearing areas of 3.3 m² (CPF) and 4.1 – 5.1 m² (FPSO)

Pile Installation Response – Blow counts



OTAL

INPEX

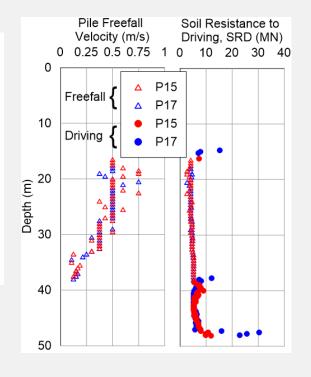
- Piles mostly installed under self weight to depth of calcarenite layer
- Limited driving to advance piles through calcarenite, often followed by pile freefall
- Relatively easy driving (< 25 blows/0.25m at 100 - 200 kJ) thereafter

Pile Installation Response - SRD

INPEX

- SRD back-calculated considering actual hammer energies during driving
- Driving through calcarenite indicated end bearing pressures (q_b) of ~40 MPa reducing to ~20 MPa very quickly
- Confirms the 'easy driving' expectation indicated by Puech et al (1990) based on experience from Persian Gulf
- Subsequent driving consistent with LB predictions by geotechnical designer, further highlighting the low skin frictions mobilised in these soils.

Freefall Arrestor Performance



TOTAL

INPEX

NG

reaches target horizon

Conclusions

- Ichthys anchor piles represent some of the largest piles installed in carbonate soils offshore Australia
- Installation response consistent with general experience of driving in region, and other parts of the world (i.e. Persian Gulf)
- Installation response consistent with LB estimates made in design, highlighted the low skin friction mobilised in these soils during pile installation
- Dynamic and static free fall arrestors used to control pile freefall and provide additional axial capacity at target depth performed as expected by design

Thank you for listening

Heerema Aegir DCV (2013)

Lifting from barge

Upended pile

