

SEAVENTION – AUTONOMOUS SUBSEA INTERVENTION

-1-

Aksel A. Transeth, senior research scientist, SINTEF Digital

Adapting to the Digital Future: The subsea industry in 20 years, 1 Nov 2018

TECHNOLOGY FOR A BETTER SOCIETY

2

Why autonomy?

- Health, Environment, Safety: E.g., avoid (or reduce the need for) having to mobilize support vessels and human personnel, possibly to inaccessible and/or dangerous areas.
- **Reduce need for support vessels**: E.g. subsea inhabitants, or more multi ROV/AUV operations in order to reduce the time needed for operations involving support vessels.
- **Reduce cost and duration of operations** for high-frequency operations: See the two above bullet points.
- Increase uptime: Improved condition monitoring and possibly faster response time for certain intervention operations may lead to increased uptime. Reduced dependence on weather conditions.

Autonomous Job Analysis (AJA) – a tool for cooperating on designing autonomous operations

Purpose:

- Analysis and break-down of operations.
- Uncover operational modes, design challenges, and limitations regarding autonomous behaviours.
- Facilitate a common understanding for all stakeholders.

Also,

- Input to pre-mission meetings
- Identify common challenges between sub-operations.

Communication 奈	Human Machine Interaction (HMI)	Sub-Operation	° Ø	Success Criteria	What can go wrong
What key information needs to be communicated? What are the communication restrictions and limitations? What communication infrastructure can be used? Bandwidth Delay Availability Sensor data Control data Video/audio feeds Emergency stop signal	What type of user interface is needed? What information does the operator need? What is the role of the human? Uf: Touch panel, joystick, console, etc Error handling responsibility Mental workload/human performance Situational awareness Operator skills vs autonomous skills Mutich information about the environment and the system itself must be available? Ex: Object detection Self-localization Environment sensing 3D, Tactile, Vision sensors Spatial information Self-sensing Task-specific sensor Refresh rate	What are we trying to What is the relation suboperations? Overall objective Qualitative description Backup plan Sketch/illustration of sub-o Sub-operation: Move tool to position A Preconditions; Have tool Position A is unoccupi	p accomplish? nship to other operation	What are the criteria for sucessfully executing the sub-operation? How do you quantify/measure each criteria? Quantitative description Efficiency Thoroughness Constraints Time bound Operational Safe State What should the system do in case of failure/danger? Are there several safe states? Power shutdown Go to a safe area Try to communicate Do not move	Which external and internal events should be planned for? What should the system do in case of undesirable events? Goal cannot be reached Human error Sensor failure Obstacles Communication loss Emergency alert Hardware failure Bad weather
Other possible inputs Useful infrastructure / human operators			Notes/Co Relevant comment	mments s that are not captured by the previous questions	
Changes to the system, e.g. new sensor. Changes to the environment, e.g. Lighting / opt	ical markers				subgoal nr

This template is licensed under Creative Commons Attribution-Share Alike 3.0 Unported License. To view a copy or read more, visit http://creativecommons.org/licenses/by-sa/3.0

Background ill.: Subsea factory © Equinor

ROV flying: AI-based planning Collision avoidance Auto-calibration **ROV operator:** Augmented reality

111111

ROV intervention: AI-based planning Task execution 3D object detection

Need subsea situational awareness – current recommended regulation

 Recommended Standard DNV GL (2016) – Rules for Classification – Underwater Technology suggests:

"<u>Systems for locating of obstacles</u>, like rocks, wrecks, pipelines, offshore structures, etc. are to be provided to avoid collisions safely."

The 3D Sensor Revolution

- Gestures and natural user interfaces
- Augmented/Virtual-Reality
- Robotics
- Industrial automation
- Autonomous cars

"see further, faster, with higher accuracy"

Slide content from Petter Risholm, SINTEF

Underwater 3D – the state of the art

Acoustic cameras

- Low resolution
- Long range
- Optical cameras
 - High resolution
 - Short range due to attenuation and backscatter
 - Generally no 3D

SINTEF

Need high-resolution 3D cameras with long range to support autonomy

Slide content from Petter Risholm, SINTEF

3D – key enabler for underwater autonomy

- Housing, 7 L, 24V
- 300m depth
- 10-20 Hz image rate
- 3rd gen system

Gives live 3D, backscatter-free images at video-rate

Slide content from Petter Risholm, SINTEF

A 6DOF object detection for subsea intervention tasks

- SEAVENTION will investigate perception based on 2D and 3D sensor data
- Methods based on, e.g., Deep Learning, will be used as basis
- Training simulators for machine learning are important

Automatic bin picking using deep learning

Autocalibration increases precision and flexibility in operations

Autonomy requires several sensors

Scenarios

- New sensor was added in a "clever position"
- A crash has pushed the sensors out of alignment
- Custom ROV solutions

Calibration quality directly affects performance

- Traveling 1 m/s and 1 degree misalignment gives
 - 11 m error on DVL after 15 min
 - 200 m error on IMU after 1 min

"Take-aways" to roadmap

- Increasing levels of autonomy gives challenges in keeping the operator in the loop.
- Resident UUVs will push the state of the art on underwater autonomy.
- Sensor fusion and improved sensors will increase perception robustness. E.g., acoustic and optical.
- UUVs will understand their environment more like humans do to enable full autonomy.
 - Need generalization: the UUVs need to recognize something that is not completely similar to the training set they have been provided.
 - Improved transition from simulators to real-life training.

Picture by austrini [CC BY 2.0 (https://creativecommons.org/licenses/by/2.0)], via Wikimedia Con mons

SEAVENTION

Autonomous subsea intervention - empowered by people and AI

Technology for a better society