blue zone GROUP AHEAD OF THE TIDE

Subsea Power - Enabling AUT AUT 2019 - 23 October 2019

Darren Burrowes CTO/BlueZone Group

THE NEED

LITHIUM ION

FUEL CELL

ALUMINIUM

SUBSEA RESIDENT AUV - THE NEED

- Rapid advances in miniaturisation
- An All Electric future?
- Reduced Through-Life Cost

ENABLING TECHNOLGIES

- Navigation
- Communication
- Connection
- Energy

20-FT CONTAINER COMPARISON

	Energy	Power
Lithium-Ion	0.5MWh	30kW
Fuel Cell	0.6MWh	80kW
Aluminium-Air	10MWh	500kW

10kWh @ 3.3kW

Porsche Taycan

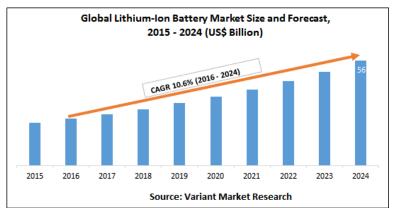
93.4kWh @ 270kW

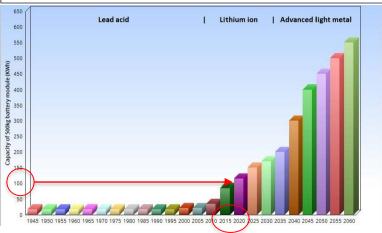
THE NEED

LITHIUM ION

FUEL CELL

ALUMINIUM


LITHIUM ION


Lithium Ion Today

- Energy:100kWh Power: 30+kW
- Voltage range 14.4V to 400+V
- Currents up to ~100A
- Design life up to 30 years

Advanced Light Metal Future

- · Improved lithium-ion technology,
- New battery chemistries
- Lithium-air, lithium-sulphur and sodium-ion

7

LITHIUM ION

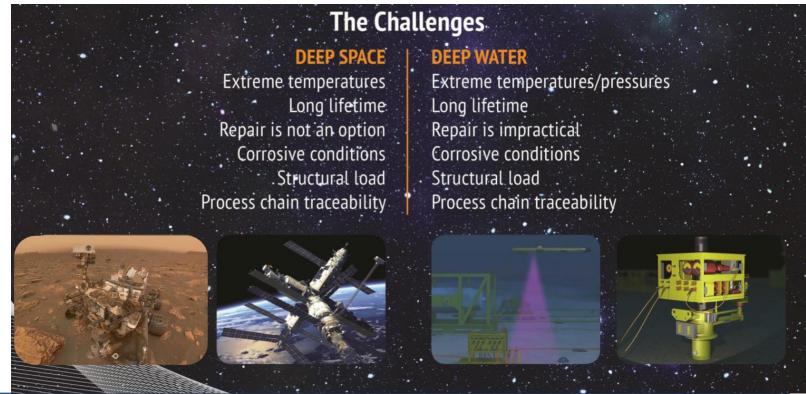
- Long-endurance lithiumion batteries
- Australia's Attack Class submarines
- Safety issues

Japan Launches First Lithium-Ion Equipped Soryu-class Submarine

JS *Oryu* is the first Japanese disel-electric submarine to feature lithium-ion battery technology.

By Ankit Panda October 05, 2018

Image Credit: Kawasaki


THE NEED

LITHIUM ION

FUEL CELL

ALUMINIUM

DEEP SPACE TO DEEP OCEAN

SUBSEA POWER NODE

Reactant Storage (H_2/O_2) Subsea Tested Components: Teledyne ODI Wet Mate Electrical, Optical, and Reactant Transfer Connectors (Energy and Data Transfer) Ejector Drive Reactant (EDR) Fuel Cell System Module Teledyne Benthos Acoustic Hybridization/ Modem Power Conditioning

Module


1.5x1.4x1.4 skid at 810kg

Long life >10,000 hours

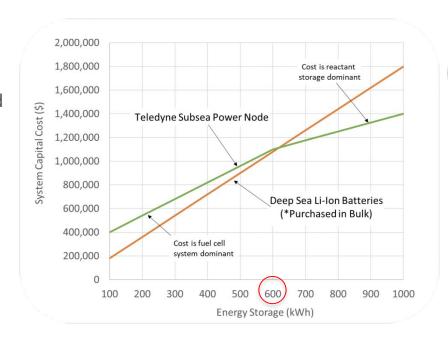
Reactant storage agnostic

Compressed-gas

TRL 9 commercially refillable

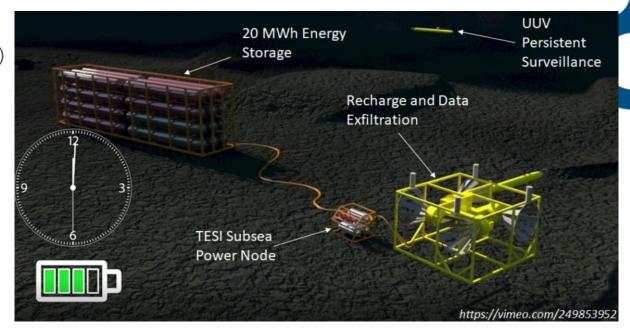
Teledyne ODI Wet Mate electrical connections for subsea power grid integration

Dual (EDR) Fuel Cell System Modules for maximum power and redundancy


2MWh

100kWh

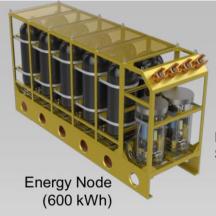
SUBSEA POWER NODE


- Cost decrease for energy increase
- Lower capital cost for energy > 600 kWh
- Unfuelled fuel cell systems are not required to meet special safety regulations
- Can operate at very low temperatures and have freeze-thaw cycle capability
- No "shelf-life" degradation is based on hours of operation not date of manufacture

SUBSEA POWER NODE

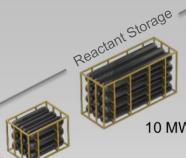
Specifications

- Power: 16kW (Continuous)
- Voltage: 400 to 600 Vdc
- Grid balancing capable
- Mass Target: 3,370 kg
- Negative buoyant fuelled
- Positive buoyant empty
- Operating Depth: 3000m



Power Node (100 kWh)

Application


Unit

Power

Fuel Cell System

2023

10 MWh

20 MWh

2 MWh

40' Class Subsea **Energy Power Node** Node Container (100 kWh)* (600 kWh)* (20 MWh)*

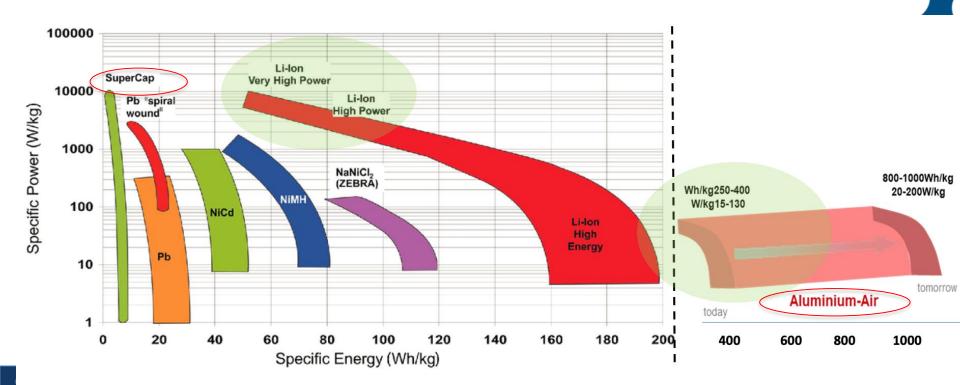
2020

Range ROV 1 to 2 kW Months of 18 Months Years of operation of operation operation

2019

21" UUV 1 to 5 kW 8 recharge 48 recharge Years of Recharge cycles cycles operation (800 km of (4,800 km Dock traverse) of traverse) 3 to 6 kW Month of 6 Months of Chemical 5 years of operation operation operation Injection System Month of 1-2 years of Hydraulic 4 to 80 4 Months of kW** operation operation operation **Pressure**

- Subsea operations with minimal ship support
- UAV surveying and mapping with persistent monitoring
- Enables both surface and subsea communication and broadcast
- Subsea micro-grid back-up power and stabilization
- Data can be transmitted to the node and either tethered to the surface or stored for retrieval during node recovery

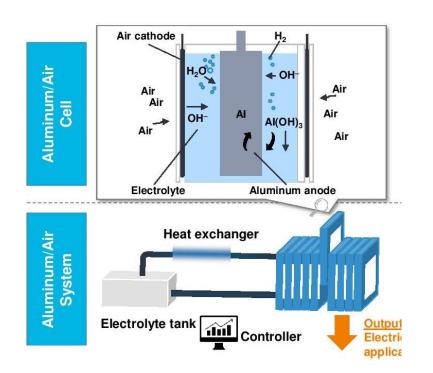

THE NEED

LITHIUM ION

FUEL CELL

ALUMINIUM

MORE POWER ON THE SEABED



Source: Electric Power Research Institute

METAL OF CHOICE ALUMINIUM

ALUMINIUM - AIR BATTERY

- Air-Cathode separates Oxygen from air and catalyst allows reaction with water
- Aluminum Hydroxide Al(OH)3 is produced at the anode generating heat and electricity

$4AI + 3O2 + 6H2O \rightarrow 4AI(OH)3 + 2.71 V$

- Aqueous-electrolyte is continuously circulating in cells:
 - Flushing out by-products
 - Regulating heat

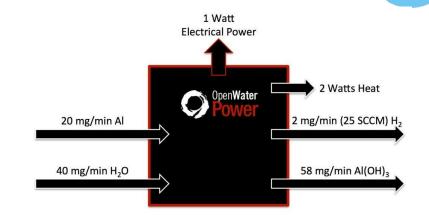
AL - AIR CONTAINERISED CONFIGURATIONS

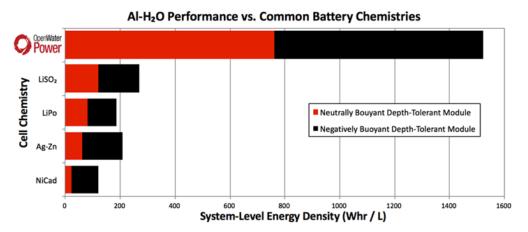
1X20' container
5760 kWh
Integral electrolyte tank
(requires 5 reloads)

1X20' container
7200 kWh
1X20' electrolyte
tank container

1X20' container

10,000 kWh


Electrolyte produced
onboard utilizing heat
emitted from the chemical
reaction



ALUMINIUM - WATER

- Ten-fold increase in energy density
- Inherently safer
- Chemically inert prior to activation

ALUMINIUM - WATER - SAFETY

 Does not generate hazards when exposed to extreme storage temperatures, low pressures, or fires

Test	Description	
High Temperature (71°C)*	No hazards observed	
Low Temperature (-51°C)*	No hazards observed	
Low Pressure (8.3 psia)*	No hazards observed	
Near-vacuum (fraction of a psia)	No hazards observed	
Activity Verification	Cell shown to be electrochemically active. No hazards	
	observed during inadvertent short, but H ₂ release rate	
	not measured.	
Fire Exposure	Minimal burning of non-metallic components. No	
	significant heat release beyond exposure fire.	

^{*}Test specifications from MIL-STD-810G

THE NEED

LITHIUM ION

FUEL CELL

ALUMINIUM

CONCLUSION

- Need: Subsea resident AUV & All-electric field
- Rapid technology development in energy storage
- Subsea applications coming soon

Japan Launches First Lithium-Ion Equipped Soryu-class Submarine

JS Oryu is the first Japanese disel-electric submarine to feature lithium-ion battery technology.

By Ankit Panda October 05, 2018

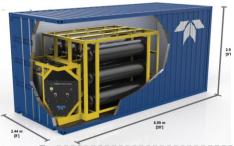
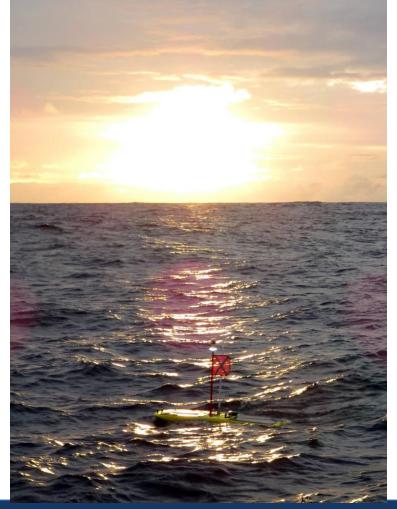


Image Credit: Kawasaki



AHEAD OF THE TIDE

