2019 AUT Conference

An Inductively-coupled Wireless Power Transfer Application for Autonomous Underwater Vehicles

Electrical & Computer Engineering Ph.D Student – Do Won Kim

Aim of Presentation

Introduce the trend of Wireless Power Transfer(WPT) System

Deliver the experiment results of prototype

Discuss what parameters are to be considered for underwater WPT

네/ CONTENTS

01 Introduction

02 Underwater WPT Review

03 Design WPT for AUT

04 Prototype Experiment

05 Consideration

1. Introduction

Classification of Wireless Power Transfer Ψ

1. Introduction Inductive power transfer (IPT)

Year	Location	Power Efficiency		Airgap	Frequency	Application	
2007	USA (MIT)	60 W	15%	2 m	9.9 MHz	-	
2009	Korea (KAIST)	100 kW	85%	17 cm	20 kHz	EV (Commercial Bus)	
2013	N.Z (Uni of Auckland)	2 kW	-	20 cm	20 kHz	EV Battery Charing	
2015	Korea Railroad	818 kW	82.7%	5 cm	61.5 kHz	High speed train	
2017 (suggested)	Wärtsilä Norway	1 MW	97%	0.1-0.5 m	2-8 kHz	Vessel	

1. Introduction Inductive power transfer (IPT)

Source

- Guidi, G., Suul, J.A., Jenset, F., and Sorfonn, I., 'Wireless Charging for Ships: High-Power Inductive Charging for Battery Electric and Plug-in Hybrid Vessels', *IEEE Electrification Magazine*, 2017, 5, (3), pp. 22-32.

- Another world's first for Wärtsilä - wireless charging for hybrid coastal ferry successfully tested

1. Introduction Inductive power transfer (IPT)

Source: Kim, J.H., Lee, B.S., Lee, J.H., Lee, S.H., Park, C.B., Jung, S.M., Lee, S.G., Yi, K.P., and Baek, J., 'Development of 1-Mw Inductive Power Transfer System for a High-Speed Train', *IEEE Transactions on Industrial Electronics*, 2015, 62, (10), pp. 6242-6250.

	18	١
н	1	1
11	1	
	Н	Н/

Year	Location	Power	Efficiency	Airgap Frequency		Application		
2007	USA	240 W	70%	2 mm	50 kHz	Underwater Vehicle Charging		
2010	China	400 W	90%	2 mm	94.3 kHz	4000-m Deep sea		
2013	China	45 W	84%	2 mm	167 kHz	Underwater Vehicle Charging		
2017	China	10 W	<47% [Z matching]	82 mm	90 kHz	Frequency bifurcation study		
2018	USA	1 kW	92.41 %	21 mm	465 kHz	3phase Underwater Vehicle C harging		
2019	China	200 W	<90 %	66 mm	60-600 kHz	Underwater Vehicle Charging		

(a) Application of a CLPT system; (b) Schematic diagram of the system; (c) Physical structure of the electromagnetic (EM) coupler

(a) Core halves with windings; (b) Coaxial and noncoaxial alignments of the coupler

Source: Li, Z.-s., et al. (2010). "Design considerations for electromagnetic couplers in contactless power transmission systems for deep-sea ap plications." Computers & Electronics 11(10): 824-834.

Source: Kan, T., et al. (2018). "Design and Analysis of a Three-Phase Wireless Charging System for Lightweight Autonomous Underwater Vehicles." I EEE Trans. Power Electron. 33(8): 6622-6632.

Fig. 2. General overview of the underwater WPT system. Fig. 6. Experimental prototype.

Source: Yan, Z., et al. (2019). "Frequency Optimization of a Loosely Coupled Underwater Wireless Power Transfer System Considering Eddy Current Loss." IEEE Trans actions on Industrial Electronics 66(5): 3468-3476.

3. Design WPT for AUT WPT Coil Design

9 of 20

3. Design WPT for AUT Circuit of WPT Application

3. Design WPT for AUT Compensation and Impedance

For resonance of WPT circuit: $jX_{in} = 0$ [Zero imaginary (Reactive) element] For maximum power transfer: $R_s = Z_{in}$

For maximum power efficiency: Rs=0 and high Zin

3. Design WPT for AUT Magnetic coupling over distance

3. Design WPT for AUT Electromagnetic field study

3. Design WPT for AUT Electric and Magnetic Field Guideline

3. Design WPT for AUT Frequency Response Analysis

3. Design WPT for AUT Frequency Response Analysis

4. Prototype Experiment Experiment Setup

4. Prototype Experiment

4. Prototype Experiment

Distance	DC Input [Watt]		AC Pin [Watt]		AC Pout [Watt]		DC Output [Watt]		Transfer Efficiency			DC-DC Efficiency			
	Air	Seawater	FEKO	Air	Seawater	FEKO	Air	Seawater	Air	Seawater	FEKO	Air	Seawater	Air	Seawater
10mm	5.33	4.60	3.87	4.26	4.24	3.51	3.78	3.89	3.64	3.48	90.70%	88.65%	91.68%	68.20%	69.67%
20mm	6.77	6.77	5.70	5.65	5.89	5.10	5.08	5.05	4.61	4.63	89.47%	89.91%	85.74%	68.07%	68.35%
30mm	8.88	7.88	8.40	7.42	6.81	7.50	6.89	6.12	5.98	5.38	89.29%	92.88%	89.87%	67.29%	68.24%
40mm	14.10	13.32	13.0	11.55	11.42	11.2	9.35	9.18	8.22	7.97	86.15%	80.95%	80.40%	58.27%	59.86%
50mm	20.76	17.21	19.5	15.24	14.14	16.0	12.79	11.5	11.06	10.07	82.05%	83.95%	81.33%	53.28%	58.49%
60mm	23.43	25.65	28.0	17.62	18.47	22.0	12.36	12.89	10.77	11.90	78.57%	70.15%	69.81%	45.98%	46.40%

19 of 20

5. Consideration for AUT WPT system

For the extension of WPT technology in AUTs

- The standards (rated power, voltage, frequency, gap and etc.) should be established.
- A joint research is necessary. (Marine + Electrical + Mechanical + ...)
- It needs to clarify how/what the implemented WPT affects AUT practically.

Question?

THANK YOU