

Agenda

- Market Drivers for AUV
- Introducing iCP
 - (integrated Cathodic Protection inspection system)
- iCP Results

AUV Market Driver

Limitations of Traditional FG Systems

- Significant attenuation v distance
- Horizonal offset errors
- OK for use on ROV where surface to probe distance is minimal but no use in AUV survey configuration

Reducing OPEX

AUV pipeline inspection reduces OPEX in comparison to historic ROV pipeline inspection

OFG iCP enables AUV to become a viable alternative to ROV for pipeline inspection

OFG ISES DOF Subsea

O&G AUV Timeline

1999: AUV development in O&G

2014: Single pass pipeline Inspection

2018: Pipeline Inspection including non-contact iCP

Cost effective integrity management

OFG ISES DOF Subsea

Introducing OFG iCP

iCP Technology Pathway

- System developed and operated for seafloor mineral (SMS) mapping by OFG
- System modified for O&G subsea CP application in co-operation with ISES
- In-field system trials in early 2018 over operational pipeline
- 2019 1st Commercial project with DOF

iCP Capability

Accurately report field gradient measurements relative to pipe

Current flow through the pipe can then be mapped

Determines:

- Level of cathodic protection
- Activity of anodes -> estimate of remaining anode life
- Leakage currents in pipe indicating pipe damage

OFG iCP First Commercial Project

DOF AUV Updated Payload

OFG/ISES iCP

- OFG Magnetometer
- CH4 (Methane Sniffer)
- Cathx Laser
- 4K Cathx Colour Camera

iCP Results

- Variations of approximately 0.02µV/cm were reliably and repeatably detected
- Vastly improved sensitivity in comparison to ROV FG systems (1µV/cm ROV)
- FG measured for all anodes locations verified against historic ROV video survey
- Instances of low current output verified as anode anomalies – historic data

CP Reference Stabs

The OFG AUV iCP survey allows surveys to be conducted with **minimal or no requirement** for time-consuming potential contacts. Consider the following scenarios:

- Potential measurements from previous surveys would easily be able to confirm the status quo, based on the system's ability to accurately determine the magnitude and direction of the electric fields.
- If unusual or anomalous activity is detected, then a small inspection class vehicle could be deployed immediately or at a later date.

Monitoring

- As the cathodic protection system ages, anode activity and wastage increases.
- These trends can easily be identified and tracked using the OFG AUV iCP system.
- Remedial action can then be planned well in advance.

iCP Benefits

Measuring the electrical field (field gradient uV/cm) around a pipeline with the sensitivity of the AUV iCP system also allows:

-	Current density along the pipeline	-	Disconnected or passivated anodes.
-	Anode current output	-	Identification of anomalies
-	Anode activity	-	Identification of areas of active coating damage
-	Estimation of remaining life of the anodes	-	Current drain (e.g. to platform, well head)
-	Identification of location, direction and magnitude of current flow.	-	Areas exhibiting higher than expected current flow.

Position Lightly Active Anodes Mid-line

OFG ISES DOF Subsea

Current Drain to Structure

iCP Summary

- 1. Accurately detect and quantify Field Gradient (FG) and current flow along a pipeline route at significantly higher speeds than historic ROV survey.
- 2. Detect & quantify pipeline electrical fields to an unprecedented level (variations of ~0.02uV/cm) from which currents (anode and damaged or areas of current drain) can be calculated.
- 3. Signal accuracy is not reduced by either vertical or horizontal standoff distances between the AUV survey position and the pipeline.
- 4. The system can gather **multiple data sets from other sensors simultaneously** without degrading the received signals.
- 5. The OFG iCP system can add **significant value in efficiency and cost savings** when used as part of an **integrated pipeline inspection management strategy**

OFG ISES DOF Subsea

Thank You!

OFG ISES DOF Subsea