

## MAPS Integrity Management and T Insert for Flow Induced Vibration

SUT Technical Evening - Advancements in Mooring & Riser Technology

Jess Zlokich – Lead Engineer, Flexible Pipe Systems

Confidential. Not to be copied, distributed, or reproduced without prior approval.



# **MAPS® Integrity Management Technology**

® MAPS is a registered trademark of GE Oil & Gas

Confidential. Not to be copied, distributed, or reproduced without prior approval.





Confidential. Not to be copied, distributed, or reproduced without prior approval.

## How the Technology Works

#### What MAPS measures

- Measures the stress in the wires
- Total stress is measured (residual and applied)
- Cannot determine a break from a single measurement

#### How do we detect wire breaks

- Multiple inspection scans at varying applied loads (eg varying pressure or tension)
- Compare output to detect breaks
- If no breaks, plot will be identical but displaced
- A break is indicated if the plot does not displace, as the applied stress does not change



## **Wire Break Detection**

## Different frequencies are used to inspect the two tensile layers

- Mid range frequency for the inner tensile (FT1)
- High range frequency for the outer tensile (FT2)

#### **Flextensile 1 Plot**

- Clearly see the two breaks in the FT1 layer
- Does not show the FT2 breaks

#### Flextensile 2 Plot

- Clearly see the breaks in FT2 layer
- Is not affected by the breaks in the FT1 layer







## **Key Capabilities**





#### Deployment

- Installed on the outer sheath; no compromise to riser integrity
- Suitable for new build or retro-fit onto existing risers

#### Monitor or inspection mode

• Independent of pipe manufacturer

#### Wire break detection

- Extended range; from termination to splash zone
- Resolution to individual wire
- Not reliant on transient signals
- Links to both outer and inner tensile armours



## **Value Proposition**



- Avoid unplanned shutdowns; baseline condition data for predictive action
- Life extension; part of an asset life extension programme
- Asset re-use; provision of data to support cases for pipe re-purposing
- **Regulatory compliance;** alignment with stakeholders to satisfy internal, HSE and regulator obligations

To date: has been used to inspect 50+ risers across a range of locations including the North Sea, offshore Africa and Brazil





## FlexInsert<sup>™</sup> for Flow Induced Vibration

Confidential. Not to be copied, distributed, or reproduced without prior approval.

## **Introduction to Flow Induced Vibration**

#### **Problem Definition**

- Dry gas through roughbore flexible pipe
- Vortex shedding and pressure pulsations
- Onset velocity influenced by
  - Carcass geometry
  - Fluid properties
  - Pipework topside and subsea
- Vibrations can cause failure in topside and subsea structures





## **BHGE's Anti-FLIP Solution**

#### **FlexInsert™ Technology**

- Tee shaped spiral insert into the carcass layer
- Tee shape is formed from a flat strip of stainless steel
- Shape of the tee optimized to not affect the bending of the pipe
- Static solution is non-welded
- Dynamic solution the top join of the tee is welded





## **How it Works**

FlexInsert<sup>™</sup> covers the spiral cavity inside of carcass; making the pipe behave similar to a smooth bore

- Increases critical flow velocity
- Reduces pressure drop







## **Increased Critical Flow Velocity**

- Onset of FIP in conventional carcass ~2m/s
- Non-Welded Flexinsert increase in FIP onset velocity to ~10 – 15m/s
- Welded Flexinsert will be an even further improvement, with onset velocities over 25m/s







## **Reduced Pressure Drop**

- The smoother internal surface with the FlexInsert<sup>™</sup> reduces the pressure drop
- Pipe ID can be reduced by ~10% to achieve the same pressure drop in large diameter pipes
- Reduction in pipe ID results in cheaper product, logistics, installation etc.





## **Pipe Specification**

Qualification of the FlexInsert<sup>™</sup> technology is aimed at following specification:

| Pipe Diameter ID    | 10-16 inch ID (Using 82 x 2.0 mm Carcass Strip) |
|---------------------|-------------------------------------------------|
| Internal Fluid      | Dry gas                                         |
| Design Pressure     | No restriction on pipe operating pressure       |
| Service Temperature | No restriction on pipe design temperatures      |
| MBR                 | No restriction on pipe MBR                      |

#### Qualification Pipes - Two Pipes - 16 inch ID and 11.5 inch ID



## Manufacturing – Non-Welded Solution

- The T-Winder can run independently
- Controlled to defined tolerances
- Placed in front of the carcass rollers and rotates with the machine









## Manufacturing - Welded Solution

Separate production line for the welded solution, currently being implemented into the factory



Machine due to be installed and commissioned Q4 2019



T-winder tooling face station:

Wax box Sensors

Flat strip spool Gearbox/roller set

## **Summary of Qualification**

#### **Qualification completed**

- Non-Welded FlexInsert<sup>™</sup> for static service technical qualification complete
- Documentation IVA certified
- Welded FlexInsert<sup>™</sup> for dynamic service technical qualification complete
- Documentation IVA certified

### **Qualification ongoing**

- Full industrialization of the static and dynamic FlexInsert<sup>™</sup> solutions are ongoing
- Installation of machines, producing pipe samples and finalizing testing
- Due for completion Q2 2020





# **Questions?**

Confidential. Not to be copied, distributed, or reproduced without prior approval.