

SHEARWATER

A Homogeneous Platform for Ocean Applications

William J. Kirkwood Senior R&D Engineer Monterey Bay Aquarium Research Institute

AUT 23 Oct 2019

Routine Operations for End Users

End user desires are for dense data sets to address issues at the lowest cost, not to get a new vehicle

AUT 23 Oct 2019

Multi-Vehicle Ops Needs/Drivers

Military

Resource Management and Protection

Oil and Gas

Integrated Multiplatform Operations - AOSN

These operations provide extremely dense data sets but are very expensive and are very hard to maintain for any length of time... plus moving assets as conditions change can be difficult

An Idea is Born - Gliders

Ocean Transects - Large Data Sets But what is it telling me?

SPEED – Getting better Temporal and Spatial Correlation

How to Improve Gliders Data

MBA

Current Status of <u>Autonomy</u> for AUVs

	Pro	Con
	 * Navigation by tracking * Faster deep survey * Multiple platforms 	* Ship costs dominate
DONE	* Ship free for additional activity	* Navigation an
DEMONSTRATED DEMONSTRATED	 * Episodic response * Rough weather ops * Multiple platforms * Space-time cov. 	 * Complex * Dock expensive * Deployment and recovery
Just Starting	* No ship! Very few People	 * Energy required for transit * Navigation an issue

Range/Speed Relationships

Power consumption:

$$P_{\rm T} = \frac{1}{2} \frac{\rho C_{\rm d} S}{\eta} v^3 + P_{\rm h}$$

Energy per distance traveled:

$$e = \frac{1}{2} \frac{\rho C_d S}{\eta} v^2 + \frac{P_h}{v}$$

Best speed:

$$v_{opt} = \left(\frac{P_{h} \eta}{\rho C_{d} S}\right)^{1/3}$$

when $P_{p} = \frac{P_{h}}{2}$

The Grid Survey

Total Survey Distance $d = A/2\lambda$

Required Speed $v = A/2\lambda\tau$

Example - 100 sq km Area

The Grid Survey - Improved

Survey Envelope

Comparative Look at Vehicle Options

AUT 23 Oct 2019

Energy Systems - Specific Energy

What About a Hybrid?

9700 Wh/l

Why Gasoline? 32 times more energy per liter Wh/l – 9,700 41 times more energy per kg Wh/kg – 12,200

Another thing to keep in mind...

Discussions refer to BATTERIES as zero emission solutions. They are not. They are energy carriers, not energy sources and thus involve losses from the true energy source.

0 50 100 150 200 250 Gravimetric (Vilsky) 12200 Wh/kg

What A Hybrid Can Offer

The Dream of Shearwater

Platform

Proof of Concept Mission for Part 2

 Oversea flight from just outside the Moss Landing harbor entrance to M1 45m/s (~100mph)

 Land and Preform submerged mission
 1.5m/s (3knots) duration of 8hours at 200m depth

 Surface and return home via oversea flight

Concept has been around for over 50 years.

Soviets had plans in WWII

DARPA – Basic Specifications

DARPA-BAA-09-06 SUBMERSIBLE AIRCRAFT

Concept of Operations

Key point: Each step as outlined has been done... this is an integration exercise

Question: Can we integrate all the necessary functions with current or near term technologies into a single package?

Re Number (flow similarity)

This is critical – it says that the propellers and flow over the body will work in air and water

$$Re = \frac{\rho v L}{\mu} = \frac{v L}{\nu}$$
Air
$$L = 2m$$

$$v = 45 \text{ m/s}$$

$$\nu = 13.58 \times 10^{-6} \text{ m}^2/\text{s}$$

$$Re = 6.63 \times 10^6$$

$$Re = \frac{\rho v L}{\nu} = \frac{v L}{\nu}$$

$$L = 2m$$

$$v = 1.5 \text{ m/s}$$

$$v = 1.307 \times 10^{-6} \text{ m}^2/\text{s}$$

$$Re = 2.30 \times 10^6$$

note: \mathcal{V} is assumed at 10° C at standard atmospheric pressure

Where to start? WIG capable AUV

Wing in Ground Effect (WIG) offers two advantages a bigger payload and less energy to transit, the pelican has demonstrated this

Look around and see what works, nature is a good place to start

Prior Work

The Soviets actually pursued portions of this plan

Can carry 50 % more weight than a similar sized airplane by using ground effect

Uses 50% less fuel to carry the larger load and transits at the same speed as a fuel aircraft

The WIG part has been proven, the efficiency numbers not yet.

Prior Work

The US has also looked at a variety of fast options

Prior Work

The vehicle will be a compromise there is no doubt, but the cleanest design to conserve energy is a priority

Sleek with the minimum number of surface protrusions capable of breaking from the ocean surface

Design Studies

We started looking at various bodies

MBARI © 2019

Computational Fluid Dynamics (CFD) Simulations

Design Studies

Rear wing on AUV airframe with canards

This design offered the best payload options and in CFD modeling did very well in flight

AUT 23 Oct 2019

CFD Analysis

Model Testing – NPS, Monterey

Model Testing – NPS, Monterey

Office of Naval Research

Award: N00014-18-1-2169

Part 1 – Build an RC model of the Shearwater and demonstrate flight, landing on water, submerging and returning to flight

Part 2 – Do the background calculations and detail concepts for structure, energy, payload and endurance

Plans for Deployment and Recovery

Flight is possible over land and over water and we could accommodate taking off from land

Part 1 – RC Model

PixHawk based with a Raspberry Pi for autonomous control, brushless DC ducted fan

Flight of Early Prototype

Part 1 – RC Model

3D Printed Model Ready for Assembly

Part 2 – Performance Calcs

Flight Characterization

alech Contraction of the second second

Hybrid Circuit, not unlike many systems in use today for cars.

Shifting Assets to Common Platform

Integrated Heterogenous Operationstegrated Homogeneous Operations

Shearwater would likely not perform every function but it could do m

Acknowledgements

The David and Lucile Packard Foundation

Office of Naval Research – Award N00014-1-18-2169

Shearwater Team: Justin Tucker, Ben Erwin, Dr. Chris Kitts, Dr. Michael Neumann, Dr. Dan Deitz, and Bailey Hoover

Questions?

MBARI – Shearwater

A heterogeneous vehicle for Autonomous Marine Observations and Operations