

Application of Functional Safety in All-Electric Control Systems

Dr. Carsten Mahler Prof. Dr. Markus Glaser

Introduction

Current market situation

- Most severe downturn in decades
- Slow recovery; prices as before 2015 will not be reached in the near future
- OG21 recommendations to cut costs and enhance recovery
 - Standardization
 - Simplification
 - All-electric technology

Source: boerse-online.de.

Source: The Digital Oil Field. Oil & Gas Investor.

Mechanical Spring and Clutch

5-in actuator.

All-electric tree with spring-return actuators.

Mechanical spring and clutch

- Trees
- Subsea separation
- Greenfield
- When enough power is available
- Wherever batteries are not acceptable

OPTIMIZE FROM PORE TO PROCESS

Battery concept

- Trees
- Electric HIPPS
- Pump modules
- Greenfields and tie-backs with limited power

Joint Industry Project

WITTENSTEIN

Federal Ministry for Economic Affairs and Energy

Technical:

- Safety <u>and</u> availability
- Novel architecture of fail-safe system
- Design life of energy storage

Non-Technical:

- Step change approach
- No AE standards available
- System target costs

Elisha Graves Otis demonstrates his first elevator in the Crystal Palace, New York Exhibition Source: Wikipedia

Any random, systematic, and common-cause failure will not lead to a failure of the safety system, which could result in

- loss of asset or facility
- pollution
- injury or death.

SIL	Risk Reduction	Allowed Probability of Event
1	>10	Once in 10 years
2	>100	Once in 100 years
3	>1,000	Once in 1,000 years
4	>10,000	Once in 10,000 years

Functional Safety Principles

System Architecture with redundancy (HFT) for Availability and Safety

System Architectural Design Trades

Lower PFD by development and introduction of enhanced diagnosis:

- Cross Checks
- Sweep Test

. . .

- Partial Stroke Test

➔ Immediate detection of failures without additional components!

	Hardware Fault Tolerance					
SFF	0		1		2	
	Complex	Simple	Complex	Simple	Complex	Simple
<60%	Not allowed	SIL 1	SIL 1	SIL 2	SIL 2	SIL 3
≥60%	SIL 1	SIL 2	SIL 2	SIL 3	SIL 3	SIL 4
≥90%	SIL 2	SIL 3	SIL 3	SIL 4	SIL 4	SIL 4
≥99%	SIL 3	SIL 3	SIL 4	SIL 4	SIL 4	SIL 4

Due to high SFF (Diagnosis) the Systematic Capability is SIL 2 or SIL 3

System Architecture: Battery

		Single Battery
Battery Data	a	
λ _{DU} [10e-6]	0.98	Battery
λ _{DD} [10E-6]	8.82	
λ <i>su</i> [10E-6]	0	Dual Battery
λ _{SD} [10E-6]	0	
SFF [%]	90%	Battery
T ₁ [h]	720 h	
MTTR[h]	1 h	
		Battery

Comparison					
	Single Battery	Dual Battery			
HFT	0	1			
Туре	Complex	Complex			
SC	SIL 2	SIL 3			
PFD	3.63 E-04	3.64 E-05			
Av	99,67180%	99,99892%			
Statistical Downtime	28.75 h/year	57 min/year			
Volume	100%	130%			

All-Electric Actuation System Summary

- SIL 2 (risk reduction of 100) with continued production at single fault
- System diagnostic coverage >90%
- Valve diagnostic coverage increases to >90%
- High SFF and Safety
- High Availability

Thank you.

Dr. Carsten Mahler, OneSubsea, a Schlumberger company Prof. Dr. Markus Glaser, Aalen University

