

Subsea Controls Down Under Conference 23rd & 24th October 2018 -

THE QUEEN'S AWARDS FOR ENTERPRISE: INNOVATION 2016 AWARD WINNING PRODUCTS AND SERVICES TAKING OUT COST AND INCREASING OPERATING EFFICIENCY

The consequences of electrical insulation failures in ageing umbilicals: copper loss and hydrogen generation.

Power Distribution Systems

Three main considerations

AC or DC

Single or Multi Phase

Most subsea control systems utilise:

Single phase, AC, ungrounded IT systems operating at <1000V

- Three phase systems have been used for long offset subsea controls Always ungrounded IT systems
- DC supplies are predominantly used in Subsea Controls by Schlumberger/OneSubsea

Earthing Arrangements

- IEC has standardised on three families of earthing TN, TT, IT
- 1st Letter is connection between earth and supply
- 2nd Letter is connection between earth and device being supplied

IT (Isolation Terra) Systems

- IT systems have no deliberate electrical connection to earth
- Continued supply on 1st ground fault
 - Could be down to Insulation resistance
 - Ground current on first fault is very small
 - Effectively grounds one side to turn IT system into a TT system
- If a 2nd ground fault occurs
 - Can lead to dangerous body currents lacking protection
 - Other phase(s) rise to phase-to-phase voltage impressed on conductor. Increases electrical stress.
- 1st fault must be fixed ASAP

Insulation Monitoring Devices

Bender

Schneider

Viper Innovations

Megacon

Hakel

Irelec

Confidential & Propietary Information

Cable Insulation Integrity Measurement

Leakage current f () of 3 sub-currents

$$i_{R} = \frac{V}{R+Ri}$$

$$i_{C} = \frac{V}{R+\frac{1}{j \odot Ci}}$$

$$i_{A} = \frac{V}{R+\frac{1}{p \odot Ci}}$$

 $R + Ra + \frac{-}{j_{\Theta}Ca}$

Where:

V= Applied Auxiliary Voltage

R=Internal Current Limiting Resistance

- R_i= Insulation Resistance
- C_i= Insulation Capacitance

R_a= Dielectric Absorption Effective Resistance

C_a= Dielectric Absorption Effective

Capacitance

Leakage Currents

The magnitude of the dc leakage current from the conductors to ground is a function of the IMD activation voltage and the insulation resistance of the cable. Simply by ohms law.

Insulation Resistance	Leakage Current	
	Competitor's IMD	Viper V-LIM
30kΩ	190μΑ	120µA
100kΩ	142µA	92µA

Where:

V= Applied Auxiliary Voltage

R=Internal Current Limiting Resistance

R₁= Insulation Resistance

I₁= Leakage Current

Confidential & Propietary Information

Experimental Set-Up

Confidential & Propietary Information

The IMD two-week effect

Single point damage to insulation equivalent to an insulation resistance of $30k\Omega$

Copper Corrosion

The IMD Electrochemical Cell

Confidential & Propietary Information

IMD Experimentation

After the experiment concluded, the wire insulation was stripped back to expose any damage to the conductor.

The corrosion affects a wide area as a result of water penetration of the wire interstices.

The copper corrosion has resulted in strands breaking.

Confidential & Propietary Information

AC Power Experimentation

At the negative surface:

 $Cu^{2+}(aq) + e^{-} \rightarrow Cu(s)$ 2H₂O(I) + 2e⁻ → H₂(g) + 2OH⁻ \uparrow Hydrogen evolution

AC Power Experimentation

The two conductors after AC power applied

Tarnishing of copper: 2 Cu(s) + $O_2(g) \rightarrow 2$ CuO(s)

Confidential & Propietary Information

Major Industry Problem: Water ingress into electrical cables

The cost of subsea electrical failures is significant and includes:

- Marine intervention costs
- Replacement hardware costs
- Unplanned lost production

IT (Isolation Terra) Systems

Confidential & Propietary Information

Extending System Life with V-LIFE

Confidential & Propietary Information

Example of restorative effect

V-LIFE IR Results System 4

Confidential & Propietary Information

V-LIFE & passivation

V-LIM & V-LIFE Comprisons

Insulation Resistance	Leakage Current	
	Competitor's IMD	Viper V-LIM
30kΩ	190μΑ	120µA
100kΩ	142µA	92µA

Insulation	V-LIM / V-LIFE Leakage
Resistance	Current
3.5MΩ	45μΑ
30MΩ	13.3µA

Increase the insulation resistance to $3.5M\Omega$ then the rate of copper loss will be reduced by more than 4 times over the rate of loss due to the standard third party IMD.

If the insulation resistance is increased to $30M\Omega$, then the factor increases to almost 15 times less copper loss.

Copper loss due to V-LIFE is never as high as that which would be experienced by connection of a standard third party IMD.

Summary

- Low IR and use of a LIM results in copper loss
- Applying voltage to subsea lines with two earth faults can create significant conductor damage
- Hydrogen generation is a by-product of low IR in sea water on energised cables.
- Few subsea engineers understand the possible consequences of operating with low IR.
- V-LIFE results in less copper loss than systems without V-LIFE.

