On-bottom Stability Design of Pipelines and Umbilicals on Seabed Susceptible to Scour: A Multi-Faceted Approach

Bassem Youssef and Dermot O'Brier

What's the problem?

Design Stage Stability

Simplistically consider pipeline or umbilical sitting on flat seabed. Hydrodynamic exposure + Minimal passive resistance

Operating Observations (Erodible seabed)

Self embedment / soil build-up around the pipeline / umbilical. Hydrodynamic sheltering + Significant passive resistance

In many circumstances the simplistic design approach requires additional weight for stability or secondary stabilisation (e.g. mattressing). Observed conditions suggest additional weight (i.e. cost) may not be required.

been fully developed".

Seabed Scour and Erodible Soils

Seabed Scour is the removal by hydrodynamic forces of seabed material in the vicinity of structures.Scour is a specific form of erosion.

Mechanism of Scour Induced Lowering of Pipelines

ris

Seabed Scour - Physical Modelling

Draper et al. (2015) "Stability of subsea pipelines

during large storms"

	wave height						currents			
tropical cyclone	time to peak peak <i>H</i> _s (m) (h)		peak rate of increase of period <i>H</i> s (m h ⁻¹) (s)		peak rate increase of amplitude of equivalent wave velocity ^f (m s ⁻²)	peak near surface (m s ^{—1})	time to peak (h)	maximum acceleration (m s ^{—2})		
Orson	10-12	24-36	0.85	9.1 ^b	3 × 10 ⁻⁶	approx. 1.2	3-6	7×10^{-5}		
Olivia	12-13	12-24	1	12-13 ^c	5 × 10 ⁻⁶					
Vance	8-9	24-36	0.3	9-10 ^d	1 × 10 ⁻⁶					
Frank	12 1 4ª	12-24	0.6 ^a	e	_	—	—			
Tiffany	8	12-24	0.8	8-9 ^d	3 × 10 ⁻⁶	_	_	·		

^aThis is maximum rather than significant wave height. Buchan *et al.* [32] suggest peak *H*₅ was 7.3 m.

^bZero-crossing period.

^cSpectral peak period.

^d Mean period.

^eNot specified.

^fAcceleration associated with amplitude of equivalent near-bed velocity, calculate with constants B = 3.29 and $\gamma = 3.3$ [33]. Where relevant, peak period has been

112 114

eris

Seabed Scour: Physical Modelling

								<i>(a)</i>	(b)
		flow c	ondition			pipel	ine properties		
experiment	mechanism	М	period (s)	rate, $a_{\rm s}$ (m s ⁻²)	e _f /D	SG	El/w' (m ³)		(8)
PRS-01	sinking	∞	—	2×10^{-3}	approximately 0	1.5	-	7	
PRS-02	sinking	∞		$2 \times 10^{-2.75}$	approximately 0	1.5	_		
PRS-03	sinking	∞		$2 \times 10^{-2.5}$	approximately 0	1.5	1. 	· (a)	
PRS-04	sinking	∞		2 × 10 ⁻²	approximately 0	1.5			
PRS-05	sinking	∞		2 × 10 ⁻³	approximately 0.1	1.5	_		
PRS-06	sinking	∞	—	2×10^{-3}	approximately 0.2	1.5	—	2	
PRS-07	sinking	0.5	12	<i>(a)</i>	time (min)				
PRS-08	sinking	0.5	12	0	5 10	15	20		
PRS-09	sinking	0.5	12	-0.2 -	PRS-06			(<i>e</i>)	(f)
				$\begin{array}{c} -0.4 \\ -0.6 \\ -0.8 \\ -1.0 \\ -1.2 \\ 1 \\ 4 \end{array}$	PRS-09	PRS PR	-05 S-01		

Velocity for onset of scour increases with increased embedment.

Paper OTC-28778-MS • Stability of Pipelines & Umbilicals on Erodible Seabed • Dermot O'Brien

ris

Seabed Scour: Physical Modelling

		flow o	ondition			pipeline properties	
experiment	mechanism	М	period (s)	rate, <i>a</i> s (m s ^{—2})	e _f /D	SG	El/ <i>w</i> ′ (m ³)
PRS-01	sinking	∞	—	2 × 10 ⁻³	approximately 0	1.5	-
PRS-02	sinking	∞		$2 \times 10^{-2.75}$	approximately 0	1.5	
PRS-03	sinking	∞		2×10^{-25}	approximately 0	1.5	8
PRS-04	sinking	∞	—	(2×10^{-2})	approximately 0	1.5	_
PRS-05	sinking	∞	-	2×10^{-3}	approximately 0.1	1.5	
PRS-06	sinking	∞	<u> </u>	2×10^{-3}	approximately 0.2	1.5	
PRS-07	sinking	0.5	12	2×10^{-3}	approximately 0	1.5	—
PRS-08	sinking	0.5	12	$2 \times 10^{-3.5}$	approximately 0	1.5	—
PRS-09	sinking	0.5	12	2×10^{-4}	approximately 0	1.5	—

ceris

Summary of Scour Characteristics

- Susceptibility of soils to scour is dependent on cohesion and grain size.
- Scour is a time dependent process. Ramp up time and duration of hydrodynamic loading are important factors.
- Water particle velocity for onset of scour under a pipeline increases with pipeline embedment.

Example of Observed Scour Effects over an Area

Random nature of scour process due to variable metocean, soil and pipe / soil contact conditions means that it is impractical to provide a deterministic prediction of scour evolution.

Nov-01

15% trench

Dec-01

Jan-02

30% trench

Jul-01

Ś

15% trench

Jun-01

Pipe on Seabed

Scenario 1

Sep-01

5

15% embedment

Paper OTC-28778-MS • Stability of Pipelines & Umbilicals on Erodible Seabed • Dermot O'Brien

eb-02

40% trench

Pine Unstable

ar-02

Apr-02

May-02

Date

Seabed Scour: Effect on Pipelines and Umbilicals

Outline of Stability Approach

Assessment of Scour Onset Velocity (V_{sc}) - Sumer and Fredsøe

Atteris

<u>Onset Velocity – Current Only</u>

 $\frac{{\rm U_{cr}}^2}{{\rm g \ D \ (1-n)(s-1)}} = 0.025 \, \exp\left(9 \left(\frac{{\rm e}}{D}\right)^{0.5}\right)$

U_{cr} = critical current velocity for onset S = soil specific gravity n = the soil porosity e/D= the pipeline embedment level

Onset Velocity – Wave and Current

$$\frac{U_{cr}^{2}}{g D (1-n)(s-1)} \ge f(\frac{e}{D}, KC)$$

Sumer, B.M. and Fredsøe, J., 2002. The Mechanics of Scour in the Marine Environment.

Assessment of Critical Velocity for Stability (V_{st})

Absolute Stability – Force Balance

 $Fh = (Ws - Fl).(\mu + \tan(\theta))$

The side slope angle (θ) is considered to vary linearly between 0° for no embedment to a maximum of 30° for 50%+ pipeline embedment.

Hydrodynamic sheltering due to open trench considered in accordance with DNVGL RP F109.

Worked Example

Parameter	Umbilical						
Outside Diameter, mm	122.0						
Specific Gravity, Original Design	2.60						
100 year Return Period design conditions							
Max Perpendicular Wave Velocity, m/s	0.45						
Wave Period, s	13.45						
Steady Current Velocity @1m ASB, m/s	0.72						
Current Attack Angle, degree	90						
Soil Conditions							
Friction Coefficient,	0.5						
Median Particle Size D ₅₀ , mm	0.2						
Submerged Unit Weight, N/m3	8000						

Worked Example

- SG based on original design = 2.6
- Acceptable SG = 1.6

Conclusions

- New approach accounts for effects of scour on stability.
- Side-steps the challenge of deterministically predicting scour behaviour.
- Has been sense checked against observed umbilicals and flowlines.

Applicability

- Small diameter pipelines, flowlines and umbilicals.
- Erodible seabeds.
- Not applicable where hydrodynamic load onset may be relatively quick, e.g. solitons.

Acknowledgements

- Draper, S., An, H., Cheng, L., White, D.J., Griffiths, T., 2015. Stability of Subsea Pipelines during Large Storms. Royal Society Publishing, A 373, 20140106.
- 2. Sumer, B.M. and Fredsøe, J., 2002. The Mechanics of Scour in the Marine Environment. World Scientific. Singapore.

Thank You & Questions