

# SUBSEA TECHNOLOGY

# Choosing the right marine autonomous system to gather your data

The Future Subsea Digital Toolbox – IMCA / SUT / THSIS Ioseba Tena Aberdeen, October 2019



POSITIONING NAVIGATION COMMUNICATION MONITORING IMAGING

### Introduction to Sonardyne

Leading independent provider of underwater acoustic, inertial, optical and sonar technology





Intro

Choosing the right marine autonomous system to gather your data



# DATA HOARDERS.

Sound IN DEPTH

# Choosing the right marine autonomous system to gather your data

# SURVEY WORKSHORSE

**Gliders** 

Choosing the right marine autonomous system to gather your data

T RENOTE FROM HATER

# OCEANOGRAPHY

\* COUND PLEASE CALL DEGE TOPSES

Sonardyne

Courtesy of Blue Ocean Monitoring







Courtesy of Dana Manalang (APL) and John Delaney (University of Washington)

# Long Endurance and Resident Systems









# **Effective Bandwidth Use**

**Digital** Combine Telemetry & Tracking

**15400 bps** From 200bps to 9000bps effective bandwidth

Sonardyne

Vessel, USV & AUV Choose the right platform for your

harvest (or hop from shore)



# **Effective Bandwidth Use**

# Large Bandwidth

Use optical modulation to enable larger data transfers

# **600 Mbps** 10Mbps at >100m 600Mbps at <7m

Sonardyne

AUV or ROV Choose the right platform for your harvest

## **Data Harvesting**





# **Offshore Ready**

Choosing the right marine autonomous system to gather your data

C-Stat 2 equipped with GyroUSBL: Full ocean depth USBL capable ASV

- Box-in LBL
- Calibrate LBL field
- Track Work-class ROVs
- Harvest data from 6G enabled equipment on the seafloor at all ocean depths
- Length, Beam, Height: 2.7m, 1.44m, 3.5m
- Draft: Min 0.64m
- Weight: 860 kg (plus GyroUSBL)
- Operational speed range: Up to 4.2 knots



Sonardyne

## **Box-in Examples**

# Choosing the right marine autonomous system to gather your data



Autonomous vehicles can manoeuvre perfectly therefore optimising data collection

# **Results:**

| Beacon<br>BoxIn     | Beacon<br>Eastings | Beacon<br>Northings | Beacon<br>Depth |
|---------------------|--------------------|---------------------|-----------------|
| Before              | 620846.42m         | 3034293.14m         | 1300.67m        |
| Calculated          | 620839.59m         | 3034287.01m         | 1304.32m        |
| Calculated Accuracy | 0.04m              | 0.04m               | 0.14m           |

Sound in Depth

Centimetric box-in positioning is therefore achievable



#### **Autonomous future**

The Wave Glider platform has been well proven over the last 11 years. Sonardyne has been integrated with their systems since 2010 for acoustic data harvesting. The new GPS-A payload allows for even more flexibility.

#### Know where you are

High accuracy GNSS and the option for GPS derived heading which is fully compatible with major correction services.

# Will it fit your vehicle?

GPS-A is compatible with the Wave Glider SV3 variant onwards (also SV2 compatible).

#### 6G as standard

Utilising the Sonardyne Acoustic Communications Module, the system is fully 6G capable. Standard fitting

The GPS-A module drybox takes advantage of the standard 3MPU LRI enclosure.

#### Simple data access

With both Ethernet and Wi-Fi onboard, accessing system data without opening the payload is both efficient and simple.

#### High performance, low power computing

Powered by a dual core ARM A7 + single core M4 processor provides plenty of grunt for onboard processing with dual redundant 128GB of data storage.



## All Ocean Depths

# Choosing the right marine autonomous system to gather your data

Case Study: Precision acoustics for persistent subsea observations



GPS-A is also being applied to oilfield asset monitoring. For example, if a pipeline is suspected of creeping due to axial strain

Sonardyne

Imagine using AMTs deployed on and near the pipe communicating with a GPS-A Wave Glider patrolling above, enabling asset teams thousands of miles away to be alerted to movement in real-time.





Sonardyne

# Large Volume Data

Choosing the right marine autonomous system to gather your data

CELLULA

IMOTUS - T



# CLOSE & IMPERSONAL

# MOTALA UID<sup>TM</sup> Subsea Docking Station

# Saab live demonstration









# MIDDAY 10M DEPTH 7M RANGE

## **Seismic Nodes**





## **Cellula Robotics XLUUV**



## **Combined Optical & Acoustics for wireless control**

















# SUBSEA TECHNOLOGY

# Thank you for your time today Any questions?

SONARDYNE.COM



POSITIONING NAVIGATION COMMUNICATION MONITORING IMAGING