Beyond visualisations: realising the full value of subsea data

Stephen McEntee

The future subsea digital toolbox 2019-10-31 Aberdeen

Introduction

- Subsea / pipelines engineer
- 20+ year's experience, Aberdeen and Norway
- Pipelines/risers design, offshore project engineer, pipelines design coordinator
- Startup company Qwilka
 - Visinum data management & analytics platform
 - Unstructured engineering data
 - Manage, extract value from video, images, MBES, lidar etc.

Objectives

- To review recent developments in the digitalisation of subsea / pipeline engineering
 - Examine the historical context
 - Present ideas on how to obtain more value from data and new technologies
 - Discuss possible future developments
- Present the subsea engineering viewpoint

Recent developments

- "Lower for longer" oil price is leading to transformation in oil & gas
- Technology is a major part of the transformation
- New developments in subsea
 - AUVs, USVs, faster surveys
 - machine learning, computer vision
- Improvements in visualizations and data access
- Significant cost reductions in integrity management

New Challenges

- New technologies offering new kinds of data
 - better data resolutions (better outcomes)
 - huge volumes of data (data management issues)
- Challenge integrating data into engineering
 - goal is to maximise value from data
- If pipelines are ALARP, why do more?
- Data has the potential to offer more than integrity:
 - realistic risk evaluation -> lower opex
 - better understanding of infrastructure -> lower capex

Pipeline engineering

- Pipeline engineering is primarily «design-driven»
 - Mainly based on simple engineering theory
 - Data from well testing, metocean, seabed survey is condensed into the *design basis*
 - Completely deterministic process, any uncertainties covered by "conservative" assumptions
- Robust but over-engineered infrastructure (high capex)
- Maximise production uptime
- Minimize operational risks (ALARP, lower opex)
 - Eliminate risks, if possible

(Image of Skarv survey data used with permission of AkerBP)

"The design process needs to be made more efficient, less costly, and less time-consuming ... it is not beyond reason to think of design being made essentially automatic, and the design being documented automatically."

Palmer & King, Subsea Pipeline Engineering (2008)

Developments & Opportunities

- Pipeline design is being automated
 - moving from the desktop to the data centre
 - moving closer to the data
- Opportunity to transform subsea engineering
 - from «design-driven» to «data-driven» engineering
 - reality-based, utilising data and field observations
 - realistic evaluations of risks
 - better understanding of infrastructure behaviour

How to realise value from subsea data?

- "Why Data Science Fails in Oil & Gas?"
 - perception that potential is not being realised
- Couple «physics-based» models to data science
- Probabilistic evaluation of risk based on data
 - move away from deterministic, conservative approach
- Inverse methodologies
 - start with the answer (the data) and analyse back to the definition
 - reveals information about the real status of the system

What is needed?

- Data accessibility
 - most subsea data is "siloed" & confidential
 - commercial and legal barriers
 - need-to-know approach will not deliver
- Growing trend towards "open" data
 - OGA National Data Repository
 - incident reporting safety flashes
 - AkerBP "data liberation front"

What is needed?

- Context as well as data
 - enables risk comparisons and physics-based approach
- Collaboration
 - more data and context means better outcomes
- Trust
 - need to have confidence to share data
 - "general infrastructure information normally uncontentious" OGA Reporting and Disclosure of Information 2019
- Subsea engineers thinking like data scientists
 - or train data scientists as pipeline engineers?

Concluding remarks

Subsea has a choice on how to proceed:

- Use new technology to achieve incremental improvements and some cost reductions
 - but basically, continue as before
- Transform subsea engineering and realise the full value in subsea data
 - reduce risks
 - maximise economic recovery

Thank you for listening!

https://qwilka.github.io/