

# Subsea Time Domain Reflectometry Lessons learned, best practice and new developments





### Subsea TDR Contents

- Introduction
- TDR Theory
- Limitations of Topside Testing
- Subsea TDR Examples
- Challenges and Best Practice
- Optical Subsea TDR





### **C-Kore** History





### 50+ Assets Installed

### 200+ Faults Located

### **C-Kore Subsea Testing Tools**







### **Subsea Electrical TDR Specification**



**Discontinuity Location** 



- Location Precision
- »» Inputs



Pulse Width



Measurement Gain

- >40km Range\* 2nS (~15cm\*) 2 to 12 +Earth 10nS to 10uS (auto)
- -18dB to 56dB (auto)





\*Dependent on cable properties

### **Subsea Optical TDR Specification**



**Discontinuity Location** 



Location Precision



Inputs



Wavelengths



Pulse Width & Gain

>100km Range\*
2nS (~15cm\*)
1 to 12
1310nm and 1550nm
Automated





\*Dependent on cable properties

### Subsea TDR Setup & Download





### Simplify Subsea Testing

USB

### **Electrical TDR Theory**

000



### **Electrical TDR Theory of Operation**

- Operation:
  - Transmits an electrical pulse and measures reflections (similar to sonar)
- Identifies:
  - Distance to end of line / discontinuity
  - Type of discontinuity / termination



### **TDR Reflection Open-Circuit**







### **TDR Reflection Short-Circuit**





### **TDR Reflection Impedance Change**





### **TDR Reflection Further Examples**









# Subsea vs. Topside

.

ore



### Deployment **Topside Testing**

S-Knre

- 1. Vessel arrives in field
- 2. ROV launched
- 3. Downline deployed (move to safe distance)
- 4. ROV derigs and connects downline
- 5. Testing from back-deck

**Downline Issues:** Quality of saved data

- Slow mobilisation and deployment
- Downline faults and attenuation
- Impedance mismatches and reflections
- Technician skill under time pressure

### **TDR Reflection Umbilical via Downline**





### Umbilical



### **TDR Reflection Downline to UTA Fault**





# **Deployment Subsea Testing**

1. Vessel arrives in field

2. ROV launched



- 3. ROV connects and triggers C-Kore unit

- No back deck equipment or permits

### **TDR Reflection Umbilical Direct Subsea**





# **Challenges & Best Practice**



### Challenges Configuration

- Characteristic Impedance
  - Cable specification or previous testing
  - Energy injection and absorption
- Velocity of Propagation
  - Distance measurement
  - Adjust after testing
- Other Settings
  - Inputs to test
  - Pulse width
  - Measurement gain







# Challenges Topology

### Connected Networks

- Suboptimal narrow down with IR testing
- Attenuation
  - Test close to fault (e.g. subsea UTA)
  - Measure from both ends
  - Test from topside







### Challenges Response

- Expected Response
  - Changes in impedance
  - Splices, junctions, terminations (FACTs)
- Comparisons
  - Healthy line with fault
  - Baseline test against installed
- EFLs & Test Leads
  - Test separately to isolate response











# Subsea Optical TDR



### **Optical TDR Theory of Operation**

- Operation:
  - Transmits an optical pulse and measures reflections
  - Single line rather than differential measurement
- Identifies:
  - Distance to end of line / discontinuity
  - Cable loss / attenuation



# es reflections arement

### **OTDR Reflection Discontinuity**









### Subsea TDR Enhancements

- Repeated Measurement Averaging
  - Reduces noise and increases fidelity
- DSP & Advanced Filtering
  - Identify subtle features on longer lines
- Viewer Enhancements Multiple Traces & VOPs
  - Draw comparisons to identify discontinuities



### Simplify Subsea Testing

# es & VOPs

### Subsea TDR Enhancements





### Subsea TDR Summary

- Introduction
- TDR Theory
- Limitations of Topside Testing
- Subsea TDR Examples
- Challenges and Best Practice
- Optical Subsea TDR





### Thank You Any Questions?

### **Greg Smith**

Operations Director C-Kore Systems Ltd

+44 1904 215161 sales@c-kore.com C-Kore.com



