Society for Underwater Technology Middle East Branch

Emergency Pipeline Repair Systems (EPRS)

An overview of the tools and methods available for the on-bottom repair of rigid pipelines

Tuesday 13 December 2022

09:00 - 15:30 at Khalifa University, SAN Campus and Dolphin Energy KIZAD

Presenters: Mr. Russel Harper & Mr. Earl Toup, Managing Director & Hyperbaric Welding & NDT Manager

Welded Solutions Hyperbaric Pipeline Repairs – DCN Diving

EUR ING Earl L. Toups MSc CENG CIWE

Agenda

- Introduction & Background
- Damage Characterization
- Main Equipment Overview
- Hyperbaric Welding Procedure Qualifications
- Non-Destructive Testing
- In-Service Welding Criteria & Considerations
- Case Study Live 32" Gas Pipeline Repair
- Hyperbaric Pipeline Repair Technological Developments
- Questions

Introduction & Background

Hyperbaric welding is the process of welding at elevated pressures, normally underwater.

Hyperbaric dry welding takes place inside a specially constructed positive pressure enclosure, often referred to as a Habitat.

The first hyperbaric weld made was made in the late 1960's in Brazil.

Welding processes: GTAW, SMAW, GMAW & FCAW

Water depths up 400 msw.

Produces a high-quality permanent repair.

- What is the water depth?
- How bad is the damage?
 - Minor
 - Major Singular
 - Major Multiple
- Is there loss of containment?
 - No
 - Yes (Minor or Major)

Habitats

Ancillary Equipment

Concrete Coating Removal Equipment

CC 12

Cutting & Beveling Equipment

Preheating Equipment

0

Mathebra States And Annalisies And Annalisies Annalisies and Annalisies Annalisies and Annalisi

Hyperbaric Welding Procedure Qualification Process

Non-Destructive Testing

In-Service Welding Criteria & Considerations

No.	Service Condition			WPQT	Risks
	Flow	Pressure	Contents		
C1	Yes	Yes	Crude ¹	With internal flow / forced cooling	Hydrogen-induced cold cracking
C2	No	Yes	Crude ¹	No internal flow / forced cooling internal ²	Internal fire if O ₂ present
C3	No	No	Crude	Covered by C2	Internal fire if O ₂ present
C4	No	No	Decruded	Covered by C2	-
¹ Nevineurs remained sincling processes during in complete welding to be determined in concerdence with COMPANY					

¹ Maximum permitted pipeline pressure during in-service welding to be determined in accordance with COMPANY requirements.

² Thermocouples are to be placed on the carrier pipe ID to determine the maximum internal skin temperature during welding.

Possible Pipeline Service Conditions

HWPQTs with Internal Forced Cooling

Hyperbaric Welding Technological Developments

"What is on the bottom, is on the bottom!"

This is why it is important to bring the correct and best materials to the job!

- Grade and delivery condition of the steel i.e. TMCP steels are preferred.
- Welding Process Selection
- Welding Consumables
- Welding Equipment
- Ancillary Welding Equipment

Give yourself the best chance of success!

Thank You

EUR ING EARL L. TOUPS MSc CENG CIWE Hyperbaric Welding & NDT Manager e.toups@dcndiving.com +31 6 51 30 2208

