Iseas

COMPLEXITIES IN OFFSHORE JACKET STRUCTURE REMOVAL Evert van Herel - 16 August 2023 - SUT

Agenda

- What is a jacket?
- Step 1: Topsides removal
- Step 2: How is the jacket left?
- Jacket removal legislation and impact on removal method
- Step 3: Jacket lift preparations: what type of lift points to use
- Step 4: Jacket lift preparations above water
- Step 5: Subsea preparation (cleaning and cutting)
- Jacket stability during / after cutting
- Step 6: Rigging connection
- Step 7: Lifting and tilting
- Final steps: Jacket transport and load-in

Mseas

l'Iseas

Heavy Lift Vessel – Pioneering Spirit Lift systems onboard

5,000 ton crane

Step 1: Topsides removal

First step to freeing up a jacket is to remove the topsides

Allseas

Step 2: How is the jacket left?

After topsides removal, the jacket is left

- Jacket can be left for periods up to (a) year(s)
- When left behind a navigation aid will be installed for ship traffic
- Access platforms may be installed directly after topsides lift for future boarding or later by a CSV
- Providing access to jackets can be relatively easy or far more complex

Jacket removal legislation and impact on removal method

Jacket removal legislation

Europe

- In the past: 55m gap required between remaining structure and water level
- Since OSPAR (Oslo-Paris) agreement between North Sea countries (in effect since 1998):
 - Structure less than 10,000t? -> full removal
 - Structure more than 10,000t? -> partial removal allowed; most of the time footings / foundation can stay in place. Gap to be >55m (=derogation case)
 - Was based on vessel capabilities at the time

Australia

- In principle full removal of subsea assets
- Environmental Plan (EP) to be issued to NOPSEMA with proposed removal solution; derogation can be proposed but it has to be shown that this results is as-good or better for the environment compared to full removal
- 55m water gap is adopted for derogation requests
- Trailing liability to be agreed between government and tiltleholder in case of derogation acceptance

Allseas

Policy impact on removal methods

Derogation approved	 Foundation remains in place No sub soil cutting required Vertical lift and transport easier Vertical load in possible 	
Full removal	 Foundation pile cutting required Subsoil cutting May result in taller structures and horizontal transport & transfer or multiple sections 	N. (0)

49925 HOUS TO C.O.G.

ORT THE

Step 3: Jacket lift preparations: what type of lift points to use

Lift points

- In most case there are no lift points present
- Lift points have to be constructed
- In general the simplest lift point is preferable
 - Least amount of access required for installing
 - Easiest to install
 - Easiest to connect to the heavy lift vessel

Every jacket and removal method has its own best lift point solution

• Key lift point drivers:

- Above water or below
- Required lift capacity
- Diameter and wall thickness of main leg
- Capacity of (horizontal) members
- Number of lift points required
- Presence of main piles in the legs
- Possible other obstructions in the legs
- Capacity and quality of existing welds

Types of lift points (simple to complex)

1. Slings around braces

2. Internal lift tools inside jacket leg

3. Internal lift tools inside welded can

Types of lift points (simple to complex)

4. Welded Trunnions onto jacket leg

Step 4: Jacket lift preparations above water

Preparation of access to top of jacket and installation of lift points

- The type of lift point dictates the access requirements
- Welding scopes require the largest amount of access (generators, welding and preheat equipment, rigging containers, air compressor, scaffolding, coffee room, ablutions, gangway landing)

Preparation of access to top of jacket and installation of lift points

- The type of lift point dictates the access requirements
- Welding scopes require the largest amount of access (generators, welding and preheat equipment, rigging containers, air compressor, scaffolding, coffee room, ablutions, gangway landing)

Step 5: Subsea preparation

Subsea scopes - Cleaning

- Cleaning marine growth from jacket members (legs, braces, skirts)
- ROV scope
 - At future support locations
 - At lift point locations
 - At exterior cutting locations
 - Reduction of weight
 - Reduction of onshore waste handling
- Brushes, rotating chain, high pressure water, scrapers can be depending on various types of marine growth

Allseas Subsea scopes - Cutting

- Main methods: Internal Abrassive Water Jetting
 - Tool can be lowered by crane into a jacket leg or pile (above or below water)
 - Can cut through anything, up to 600mm thickness
 - Cut confirmation bit more complex than DWC
 - No external dredging required in case of cutting below seabed
 - Clean and straight cut surface

Subsea scopes - Cutting

- Main methods: Internal Abrassive Water Jetting
 - Tool can be lowered by crane into a jacket leg or pile (above or below water)
 - Can cut through anything, up to 600mm thickness
 - Cut confirmation bit more complex than DWC
 - No dredging required in case of cutting below seabed
 - Clean cut surface
- Other methods: Hydraulic shears

Subsea scopes - Cutting

- Main methods: External Diamond Wire Cutting (DWC)
 - Tool can be made neutral buoyant for positioning with ROV
 - More suitable for braces and cuts above the seabed
 - Positive cut confirmation
 - Risk for uncompleted cuts due to wire breakage

Subsea scopes - Cutting

- Main methods: External Diamond Wire Cutting (DWC)
 - Substantial dredging required in case of cutting piles below seabed

Jacket stability during / after cutting

Jacket Stability

- Stability requirements are depending on time between cutting, final cuts and actual lift in combination with the expected environmental conditions
- Stability criteria: horizontal displacement and toppling
- Often green cuts, (yellow cuts) and red cuts philosophy is used:
 - Green cuts can be made well in advance of connecting rigging and lifting
 - Yellow cuts can be made shortly in advance of connecting rigging and lifting
 - Red cuts require the rigging to be connected and sometimes slight tension to ensure stability
- For full removal jackets red cuts may be omitted if analysis proves stability is sufficient for a specific period (e.g. month before lift it should be able to withstand a storm of the applicable season)
- For partial removal or removal in sections, the upper jacket parts very often have red cuts

<u>|</u>||seas

Step 6: Rigging connection

Rigging connection to Jacket Lift System (JLS)

Pre-defined and agreed connection steps including safe positions for crew

Rigging connection to Jacket Lift System (Crane or JLS)

Rigging connection to 5000t Crane

Step 7: Lifting and tilting

Jacket lift with Jacket Lift System

Final steps: Jacket transport and load-in

Inclined on JLS and on deck PS

Horizontal transfer from JLS to barge by skidding and subsequent load in

Allseas Vertical jacket load-in

Direct Load-in onto quayside

COMPLEXITIES IN OFFSHORE JACKET STRUCTURE REMOVAL

Evert van Herel 16 August 2023 – SUT-Perth