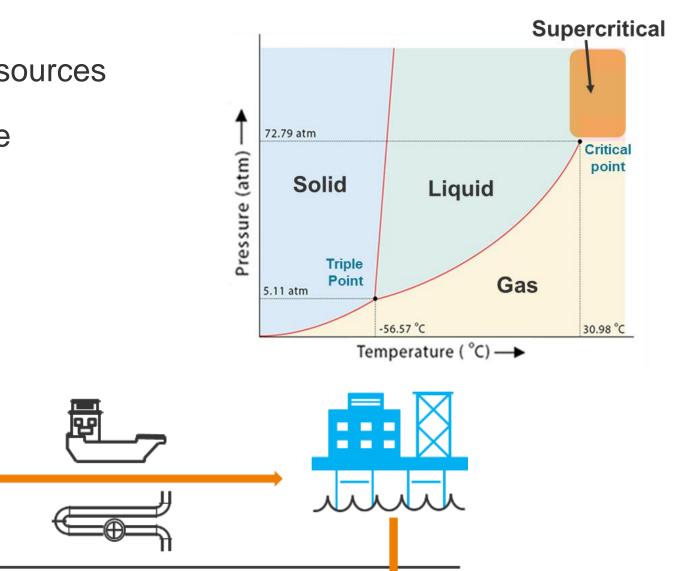


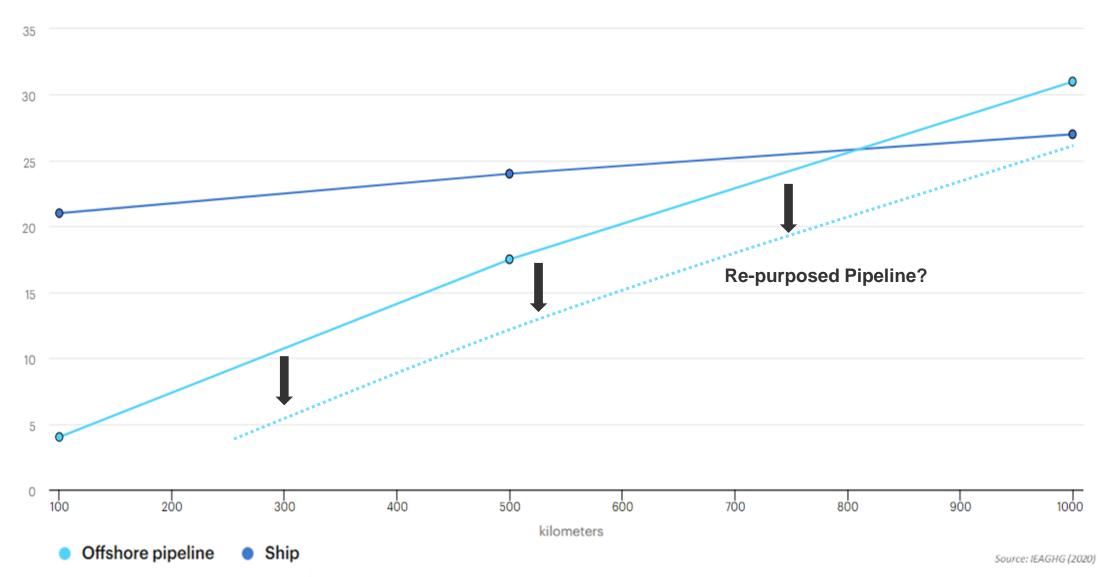
OFFSHORE PIPELINES FOR CCS SERVICE

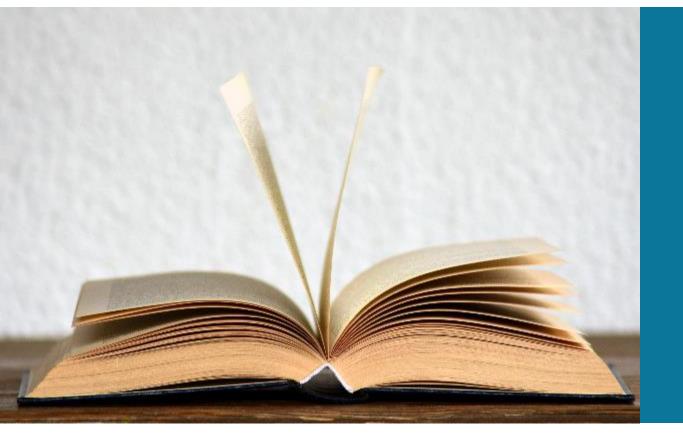
Emilien Rulence


14/06/2023

Introduction

- Transport to underwater storage
- Supercritical fluid

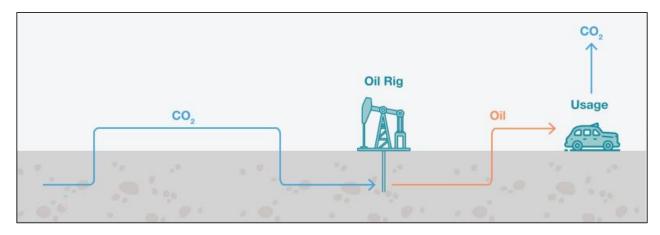



Introduction

USD per tonne CO2

Current Knowledge

How much do we know?



- Existing CO₂ pipelines
 - 10,000 km
 - Mostly in North America / Europe
 - Majority used for EOR onshore
 - Single source

- Existing Standards
 - Historical subsea pipeline standards

+

- DNV-RP-F104 / ISO 27913 / ISO TR 27921

Atteris

Main Technical Challenges and Uncertainties

Main Technical Challenges / Uncertainties

Internal Corrosion

Material Compatibility

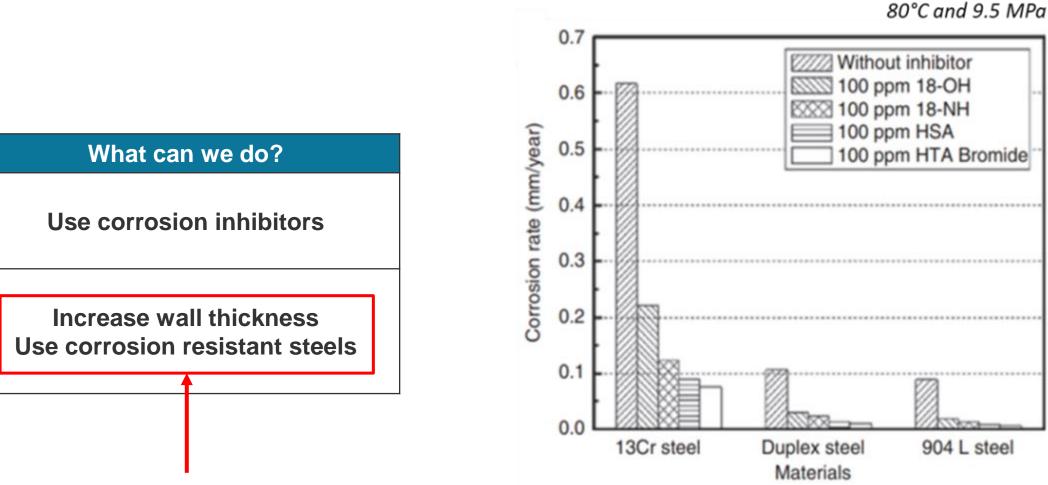
Ductile Fracture Propagation

+ Other conventional issues

Internal Corrosion

Material Compatibility

Ductile Fracture Propagation


Carbon steel

Corrosion rates can go up to 10 mm/year ٠ 650 ppm water (under-saturated) 3310 ppm water (saturated) 6 Corrosion rate (mm year⁻¹) **Excess** water 5 Type and concentration of impurities Combination of impurities 3 Water solubility in pure supercritical CO2 4000 2 3500 25°C Change from gas 3000 to liquid CO. y H₂O (ppm) 2500 2000 CO, CO2+SO2 CO2+O2+SO2 CO2+O2 1500 4°C 1000 4°C 15°C -10 °C 500 25°C 0 20 40 60 80 100 120 140 180 200 160 P(Bar)

© SINTEF Energy Research

Source: L. Wei et al.: Corrosion behaviors of steels under supercritical CO2 conditions, CORROSION REVIEWS - July 2015.

Expensive / Only for new pipelines

Tie-in

- Pre-commissioning
 Pigging (subsea launcher / receiver)

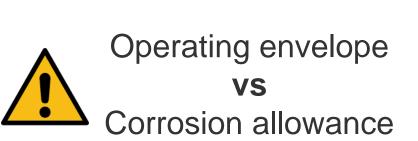
- Control internal conditions •
- Dehydrate the CO2
- Monitor impurities

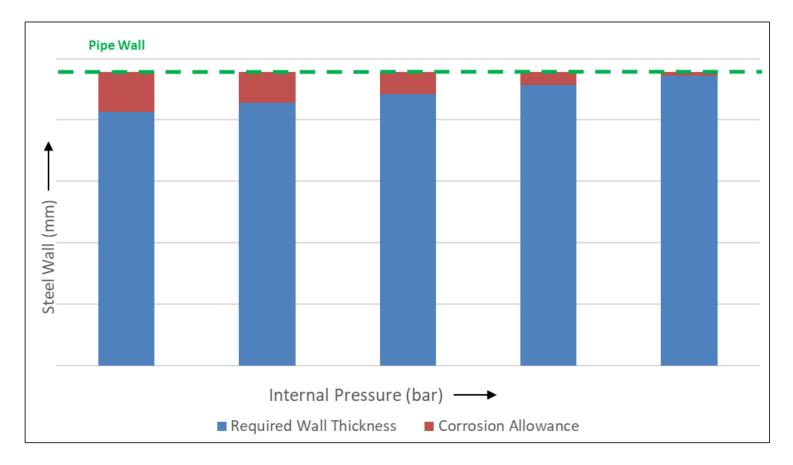
Identify all possible impurities

Define acceptance criteria

What can we do?

Prevent accidental water ingress


Control the CO₂ stream



Requirements for a re-purposed pipeline

- Know the condition of your pipeline
- Understand the impact of possible contaminants

Sharing Knowledge

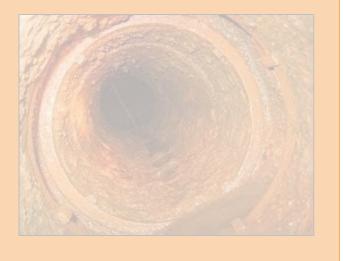
Future Fuel CRC (Atteris / Deakin University)

Purpose:

- Understand the synergistic effects of impurities
- Provide recommendations to avoid high corrosion rates
- Identify areas where knowledge and experience are limited

State of the art study

- Database of all available research / results to date
- Access to research papers and models not yet published



Atteris will present on the subject at the APGA Convention in October

Internal Corrosion

Material Compatibility

Ductile Fracture Propagation

- Can reach low temperature Effective solvent / High permeation rate CO₂

- Adjust decompression rate
- Select suitable materials

 \rightarrow Lab testing based on CO₂ stream composition and operational conditions

Requirements for a re-purposed pipeline

- Identify all materials in the system (e.g. internal coating, seals)
- Understand the impact of past operations

- Replace polymers where possible
- Extensive documentation review
- Sampling
- Laboratory testing

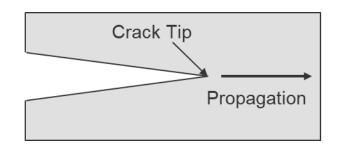
CHEMICALS		.S		PLASTICS, ELASTOMERS & LEATHER																					
A: Excellent, B: Good, C: Fair to Poor, D: Not recommended - No Data	Aluminum	Carbon Steel	Cast/Ductile Iron	304 Stainless Steel	316 Stainless Steel	Acetal	Buna	CSM (Hypalon)	EPR, EPDM	Fluorocarbon	Fluoroelastomer (FKM)	Geolast (Buna & Polypropylene)	Hastelloy C	TPE	Leather	Nitrile (TS)	Nitrile (TPE)	Nylon	Polychloroprene	Polypropylene	PTFE	PVDF	Santoprene (EPDM & Polypropylene)	UHMWPE	Urethane
Caprylic Aldehyde	-	-	-	-	-	-	-	-	-	-	D	-	-	-	-	D	-	-	-	-	Α	-	-	-	-
Carbamate	-	-	-	-	-	-	C	-	C	Α	Α	D	-	-	-	С	D	-	C	-	Α	-	Α	-	D
Carbitol	В	-	В	В	В	-	В	-	C	С	Α	В	Α	-	-	В	С	-	C	C	Α	Α	В	-	D
Carbolic Acid (Phenol)	В	D	D	В	В	D	D	D	C	Α	Α	D	Α	D	D	D	D	D	D	C	Α	В	D	В	С
Carbon Bisulfide	В	-	В	В	В	В	D	D	D	-	Α	D	В	C	-	D	D	Α	D	D	Α	Α	D	D	C
Carbon Dioxide	Α	Α	D	Α	Α	С	Α	-	В	Α	В	-	Α	С	Α	Α	В	В	В	Α	Α	Α	Α	C	C
Carbon Dioxide (dry)	В	D	D	Α	Α	Α	Α	В	В	-	В	-	Α	Α	-	-	-	Α	В	Α	Α	Α	-	-	-
Carbon Dioxide (wet)	Α	D	D	Α	Α	Α	Α	В	В	-	В	Α	Α	-	-	-	-	Α	В	Α	Α	Α	-	-	-

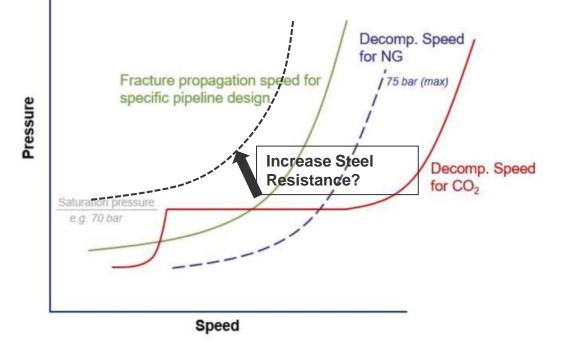
 $https://www.graco.com/content/dam/graco/ipd/literature/misc/chemical-compatibility-guide/Graco_ChemCompGuideEN-B.pdf$

Ductile Fracture Propagation

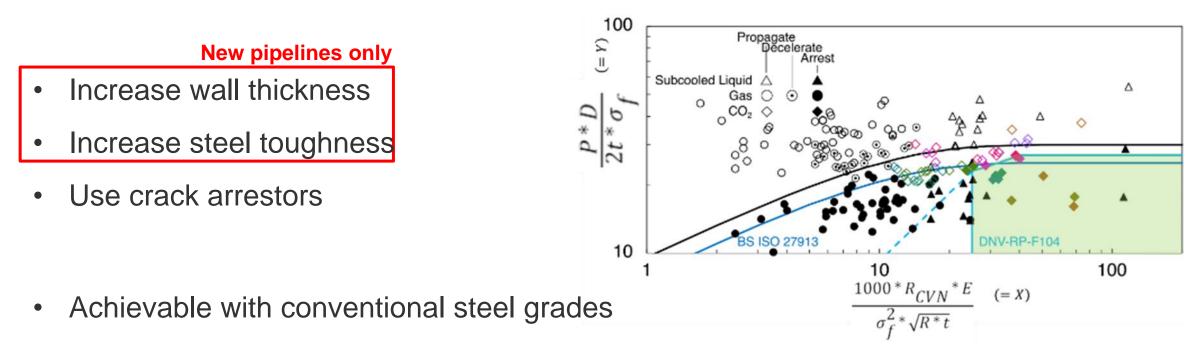
Internal Corrosion

Material Compatibility




Ductile Fracture Propagation

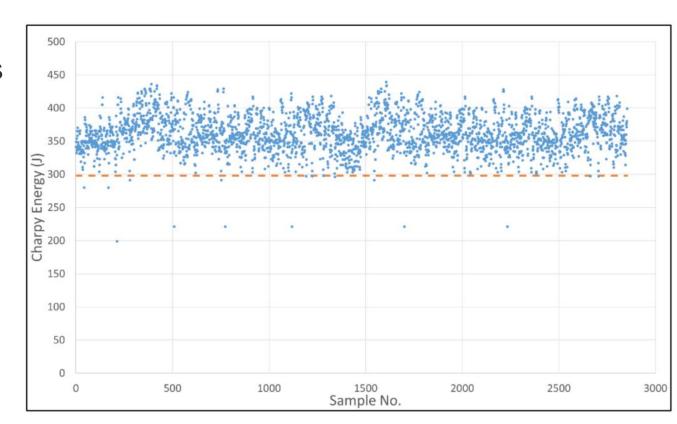
Ductile Fracture Propagation


High susceptibility to fracture propagation for CO₂ pipelines

- Speed drop at phase change
- Fracture propagation speed > Decompression speed

Ductile Fracture Propagation

• Existing DNV method based on full-scale testing (limited)



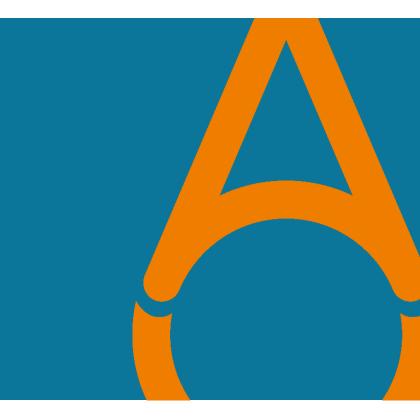
- Temperature and impurities levels impact the saturation pressure
- Reducing internal pressure does not help

Requirements for a re-purposed pipeline

- Detailed inspection
- Extensive documentation review
 - Identify steel grades
 - Understand past requirements
 - Assess tests representativity

Conclusion

- Early stage of CCS submarine pipeline network development
- Industry is still learning / on-going research projects
- Fast-moving


- Specific challenges can be overcome
- Repurposing pipeline → Think ahead!

Thank You

- Emilien Rulence +61 8 9491 0225
- Emilien.rulence@atteris.com

