SUT - Foundation Design for Offshore Structures

Sebastien Manceau Kent & Mike Rattley Geowynd

OSIG – Offshore Site Investigation & Geotechnics Committee

- Introduction
- Soil Parametrisation: Critical
- Piles
- Monopiles
- Shallow Foundations
- Suction installed foundations

Tilus

Summary

Introduction

- Soil Parametrisation: Critical
- Piles
- Monopiles
- Shallow Foundations
- Suction installed foundations

Hur

Summary

Offshore Foundations Types

Piles

Monopiles

Shallow foundations

Suction buckets

Limited Geotechnical Data

What is Special About Offshore **Foundations? Soil Data**

Large sites

Vater Column

Strate

- **Expensive SI**
- High reliance on geophysics (at least in early stages)

What is Special About Offshore Foundations? Loading

- Extreme irregular, cyclic environmental loading
- Unfortunate events

What is Special About Offshore Foundations? Size Matters

Bullwinkle

529m high 50,000 tonnes = 10 x Eiffel tower 412m water depth Piles: 28no 84'' (2.134m) OD 165m long

Troll A 472m high 656,000 tonnes (dry) 1.2M tonnes ballasted during tow 303m water depth

What is Special About Offshore Foundations? Design Requirements

- Design for limit states
 - ULS, ALS, SLS
 - FLS for structural design
 - WSD or LRFD
- Design for performance
 - Allowable displacements
 - Natural frequency

Introduction

Soil Parametrisation: Critical

Piles

- Monopiles
- Shallow Foundations

Summary

Suction installed foundations

Seabed Variability & Engineering Judgement!

Seabed Variability & Engineering Judgement!

Soil Parameterisation: Critical!

SUT Society for Underwater Technology

- Soils are highly variable
- Soil response is an outcome of soil type and geological history
- Impacts of sampling method and measurement process
- Critical to understand the data

Introduction

Soil Parametrisation: Critical

Piles

- Monopiles
- Shallow Foundations
- Suction installed foundations

here

Summary

One-offs structures Typically post-piled

- Jacket lowered to seabed on mudmats
- Piles driven trough legs, or
- Piles driven through sleeves

Oil & Gas and Offshore Wind Substations

Oil & Gas and Offshore Wind Substations

- Loading
 - Large vertical load
 - Small horizontal loads and moment
 - 'Low' cyclic component

- Pile design governed by
 - Axial compressive capacity
 - Groups?
 - ULS

Offshore Wind WTGs

- 50-100 structures serial fabrication and installation
- Typically pre-piled

Offshore Wind WTGs

Unplugged vs plugged

Clay

- Shaft: f_s = α su
- End bearing: q = 9 s_u
 Sand
- Shaft: $f_s = \beta \sigma'_{v0} \le f_{s_{lim}}$
- $q = N_q \sigma'_{v0} \le q_{lim}$

Reliable?

- Pile load test databases give Qc/Qm
- Large standard deviation
- Particular bias in sand with D_r and L/D

0.0

10 20 30

100

NGI (2005), Clausen et al (2005) UWA (2005), Lehane et al (2005)

Pros

- Better understanding of behaviour (radial stresses, 'friction fatigue' ...)
- Improved pile load test databases
- Improved reliability

'CPT-based' methods:

Fugro-05, Kolk et al (2005)

ICP (2005), Jardine et al (2005)

Cons

- Require higher quality of ground investigation (CPT & lab testing)
- Not all applicable to clay
- Industry 'politics'

Axial Capacity - 'CPT-based' methods

Pile Driving

Reliable assessment of driveability for:

- Installation feasibility & planning
- Stress checks and fatigue during driving

Uncertainties from:

- Modelling of hammer and driving equipment
- Ground stratigraphy, parameters
- Method used From back analyses of installation records databases

Uncertainties best managed through back analyses of specific driving records in similar conditions (when available)

Other Challenges

- Cyclic loading and degradation of axial shaft capacity
- Challenging ground conditions for driven piles (e.g. carbonate soils, chalk ...)
- Other installation techniques and associated design methods (drill & grout, vibro, jacking...)
- Seismic

- Introduction
- Soil Parametrisation: Critical
- Piles

Monopiles

- Shallow Foundations
- Suction installed foundations

Hur

Summary

Piled Jacket and Monopile Foundations – Lateral pile response

Four set of springs: p-v, H-v, $m-\psi$ and $M-\psi$

Monopile Foundations – Example OWF design criteria (25 year lifespan)

□ 50 year storm (ULS)

- Wind (Turbulence)
- Waves
- Current
- o Ice

Permanent Deformation (SLS)

- o 0.25° Installation
- 0.25° Design

Fatigue (FLS)

Eigenfrequency

Earthquake (EQ)

- Extreme Level (ELE)
- Abnormal Level (ALE)
- Ship Collision (ALS)
- Corrosion
- Driveability (Installation)

Often critical, therefore initial soil stiffness critical

Monopile Foundations – Lateral behaviour

25

Monopile Foundations – Lateral behaviour

- Standard API/DNV/ISO p-y curve approach is not adequate to optimise foundations and achieve economic design
- Standard p-y significantly underpredicts ultimate strength and stiffness in some soils

May overpredict in other soils

Outcomes

Saving £ 45 M in materials £ 10's M in easier and faster T&I

Easier to lift + Less time offshore = Improved safety

- Introduction
- Soil Parametrisation: Critical
- Piles
- Monopiles

Shallow Foundations

hu

Suction installed foundations

Summary

Shallow foundations – Types

- Oil and gas platforms (mudmats for pre-piled stability, permanent GBS)
- Subsea structures (manifolds, templates, protection structures, etc)
- Wind turbines (GBS)
- Spudcan foundations for jack-up rigs
- Size varies greatly from a few metres up to 10s of metres

Shallow foundations – Types

- Axial and lateral / rotational components of soil support cannot be decoupled (unlike pile design)
- Principle applies regardless of size
- Design process considers capacity and settlements for both short-term and long-term response

Gravity Based Foundations – Load regimes

Gravity Based Foundations - Envelopes

----Soil

Dead

Weight

Sliding

Limit

300.0

Resultant

Factored Load

Resistance

400.0

- Introduction
- Soil Parametrisation: Critical
- Piles

- Monopiles
- Shallow Foundations

Summary

 Suction installed foundations

The

Suction Installation

- Differential pressure provides penetration force
- Plus (in sand) concentrated flow net around tip reduces effective stress
- Rapid
- Quiet
- Reversible

Suction Caissons - Applications

Shallow foundations

Piles & anchors

Monobucket foundations

Jacket foundations

Suction Caissons – Design challenges OW

- Introduction
- Soil Parametrisation: Critical
- Piles
- Monopiles
- Shallow Foundations
- Suction installed foundations

Hur

Summary

Summary

- Successful foundation design for offshore structures requires:
 - Understanding the design situations and associated load conditions
 - Stable>get it in>make sure it's safe once in>extend life or get it out
 - An understanding of geological variance, the ability to 'read' geotechnical data and understanding of lab testing and soil mechanics first principles. See it>do it>understand it
 - Potential foundation solutions could vary. Think about risk, cost and schedule
 - Cyclic loading effects on design can be critical, particularly for offshore wind

THANK YOU

- Offshore Site Investigation & Geotechnics Committee