

subsea 7

Road to COP28 – Offshore Renewables & New Energies

Make offshore green Hydrogen possible

12th September 2023

Suranjan Govender Ashish Rawal

1

subsea 7

Jan I.

10

0000

0

subsea7

Our Mission Support the development of renewable offshore hydrogen

Large scale hydrogen Production

> **O&G** decarbonization

subsea 7

What We Do

We bring together key building blocks of offshore wind-to-hydrogen to deliver reliable, optimised and integrated solutions

Our Strengths

Delivery-oriented, 1000+ projects Market leader in offshore wind Market leader in O&G integrated projects Collaboration through Early engagement

MAKE Offshore Hydrogen Archetypes

Off grid centralised floating production

Point to point Pipeline transport

10000

I. Offshore pipeline transportation of H₂ or derivatives

> II. Dedicated Offshore infrastructure for H₂ Production

> > III. Hydrogen to optimise revenue of power production

> > > IV. Small-scale production for local demand

Port integrated production with buffer storage

subsea 7

Decarbonisation of HC production using wind and hydrogen with integrated buffer storage

Π

Archetypes, clients and drivers

	H2 Archetype	Architectures	Typical clients	Needs, drivers
Ι	Offshore pipeline transportation of hydrogen	Grid connected point-to-point pipelines and networks. New and repurposed infrastructure	Gas grid operators	Pipeline systems for transportation of gas H ₂ derivatives. Multi nation cooperation & investment
II	Dedicated offshore facilities to produce hydrogen	Off grid fixed, floating, centralised and decentralised systems with H2 export by pipeline or tanker.	Power producers, Tech. gas providers, O&G clients	Offshore wind facilities optimised for hydrogen. Off-grid and independent
III	Hydrogen and electricity to optimise revenue or meet variable demand	Fixed and floating centralised and decentralised systems with H2 and electrical export infrastructure. Possible grid connection	Power producers, Tech. gas producers	Offshore wind facilities, Pipelines and cables, electrical and gas infrastructure, Improved utilisation of plant i.e. H_2 to benefit from curtailed wind of market volatility
IV 7	Small-scale production for local demand	Small scale production for local consumption. fixed/ floating, centralised or decentralised. Possible modular and mobile systems to meet short term goals	Industry wanting a dedicated supply, Ports, transport, off grid customers	Local production driven by demand or resource opportunity, Also customers driven by decarbonisation

Subsea7 ongoing work – Studies and business associations

H2Shore - Hydrogen coastal storage and distribution

Large Scale Floating Hydrogen Production Offshore Scotland

Collaboration with

Collaboration with

Offshore Hydrogen Production

Architectures

Collaboration with — EnBW

Offshore Hydrogen Production

Collaboration with OAirLiquide

Hydrogen Council

9

Reducing LCOH through leveraging our technologies ecosystem

H2 Pipelines and Challenges

- Hydrogen causes Hydrogen Embrittlement (HE)
- HE will degrade material properties
 - Increased FCGR \rightarrow reduction in fatigue life
 - Reduction in fracture toughness and ductility
- Pipeline welds are more susceptible to HE due to presence of
 - different microstructure (e.g. non-metallic inclusions)
 - metallurgical defects
 - stress distribution
- Various collaborative initiatives intend to tackle the subject, including:

- H2Pipe JIP by DNV
- Hydrogen Pipelines, by EPRG

Physical process of H2 Embrittlement (HE): from micro to macro; (a) H2 is dissociated into H atoms in the pipeline and adsorbed to the inner surface of the metals, (b) H atoms or regenerated H2 molecules degrade metal lattices, (c) H2 breaks the lattices and evolves into micro-crack propagation, (d) macroscopically visible cracks appear (taken from Wu, X. et al. (2022); "From the Perspective of New Technology of Blending Hydrogen into Natural Gas Pipelines Transmission: Mechanism, Experimental Study, and Suggestions for Further Work of Hydrogen Embrittlement in High-Strength Pipeline Steels")

PowBox-H[™], a novel approach to offshore hydrogen storage: compact, modular and scalable subsea module

Patent pending

Days

Storage capacity of each unit **~500 MWh** Several units can be connected to build up a **larger capacity of several GWh**

Very compact, easy to manufacture, can be produced efficiently, made of mature components

Composite cylinder tanks Type IV (PE liner, fiber wrapping) reducing the need for maintenance and corrosion protection

Shore-based assembly and testing of system at manufacturing site

Floating structure towed to site and submerged into position at seabed in a controlled manner thanks to its integrated ballast system

 \rightarrow low installation cost, relocation possible

Waiting on Weather days

Towing installation is less weather restrictive than for heavy lift installation

Use of field proven engineering principles from the subsea O&G industry, building on Subsea7's **towed pipeline bundle expertise** (>40 installed)

Light composite tanks combined with a structural foundation of concrete enable a **simple hydrostatic balancing of the structure** for towing and stability at seabed

Qualification tests performed at SINTEF Ocean in Norway and witnessed by DNV. Included towing and installation assessments, impact loads and overtrawlability testing

- Offshore wind is a significant part of what we do and we are focused on the wider energy transition
- Developing field development solutions and technology development to enable Offshore Hydrogen production
- Collaboration and partnerships are essential to how we operate
- Through collaborative work, technology and system integration we contribute to cost effective solutions and lower LCOH to enable large scale offshore hydrogen

THANK YOU

subsea 7