

SUT

October Evening Technical Meeting

A Case Study on Optimising Flexible Riser Fatigue Design

Craig Booth, Sean Husband, Emilien Rulence, Céline Lanoëlle **Atteris Pty Ltd**

Introduction

Context

- Assess a manufactured flexible for suitability
- Preliminary assessment indicates that fatigue life may be a concern

Objectives

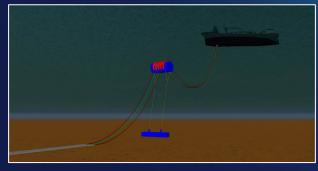
- 1. Confirm that the intact riser can sustain the full design life
- 2. Assess the impact of an outer sheath breach on fatigue life
- 3. If failure is a risk, recommend measures to optimise fatigue performance

Constraints

- Do not change the cross section (existing flexible)
- Do not change the proposed configuration
- API 17J Safety Factor would not be reduced

Introduction

Atteris


Problem: Fast turn around required

Fatigue life calculation for dynamic risers:

- Global analysis (Orcaflex)
- Local cross section analysis (BFLEX)


Change one parameter = Re-run both models

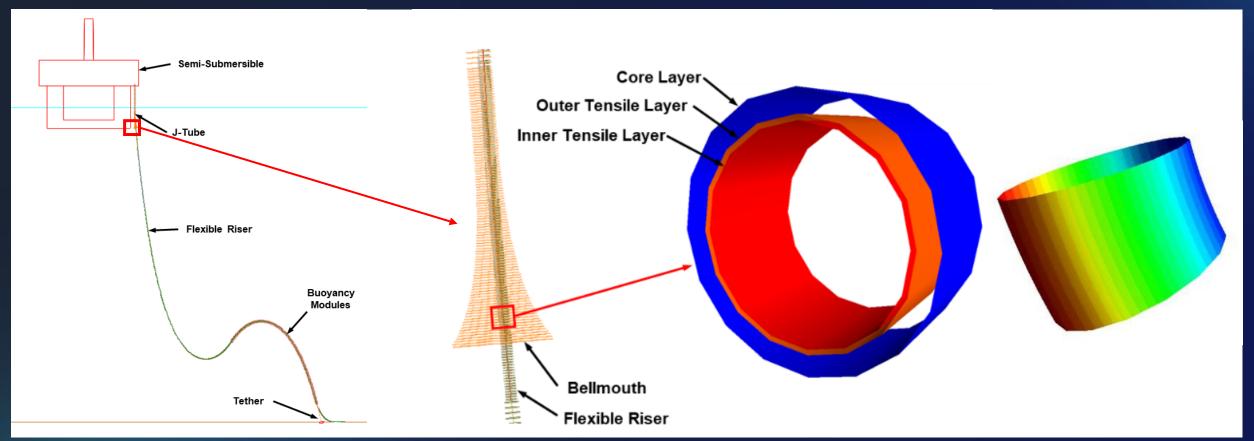
Can we automate the process to run multiple load cases and sensitivities with better efficiency?

Orcaflex Software (Orcina)

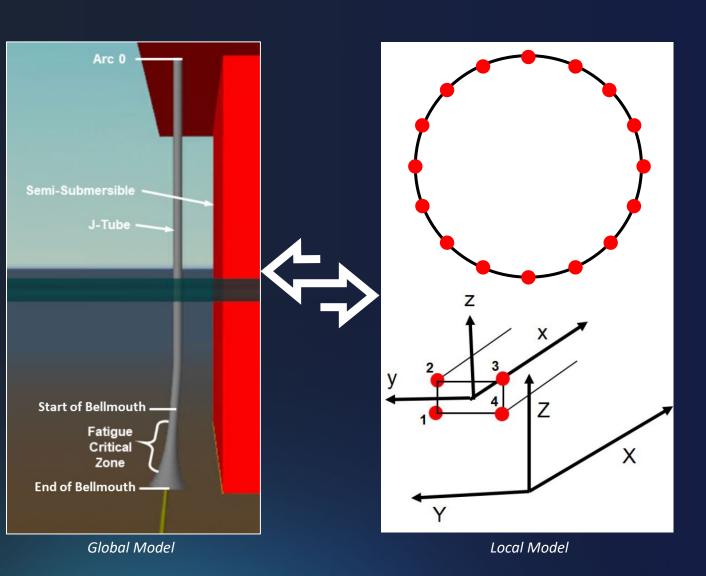
BFLEX Software (Sintef)

Analysis Toolchain

- 1. BFLEX for hysteresis (P, T, μ)
- 2. Orcaflex for tensions and curvatures (metocean)
- 3. BFLEX for local stresses
- 4. Python for fatigue damage



Model Description

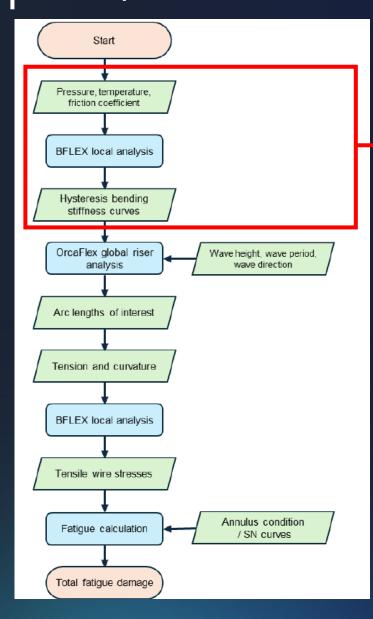

Atteris

- Riser in Pliant Wave configuration
- Focus on fatigue critical zone within the bellmouth

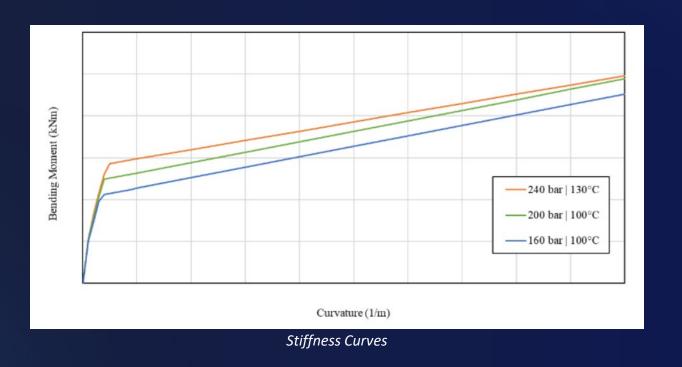
Model Description

GLOBAL MODEL

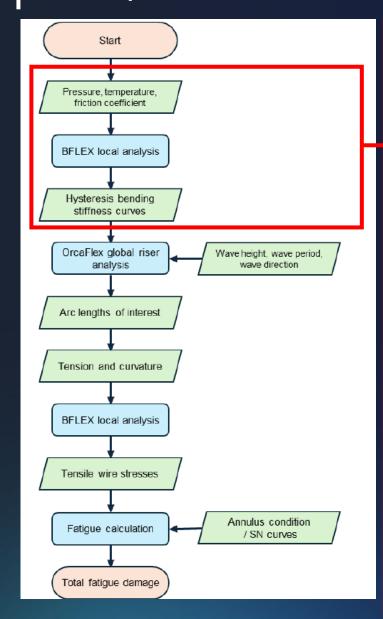
- Extract loads along 8.4 metres of pipeline
- 200 mm pipe elements

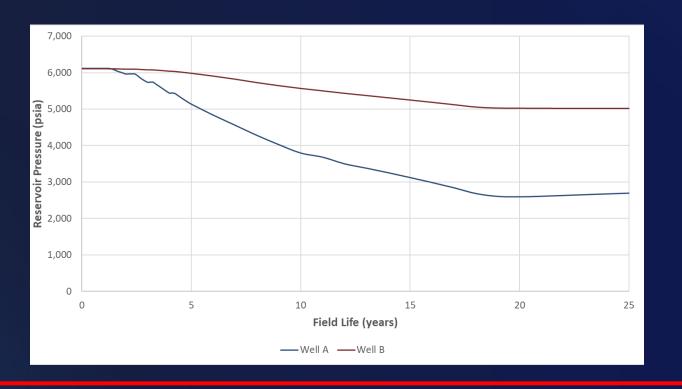

LOCAL MODEL

- One element of the global model
- 16 points around the circumference
- Inner armour / Outer armour
- Extraction of stresses and fatigue damage calculation at all 4 corners of the wire

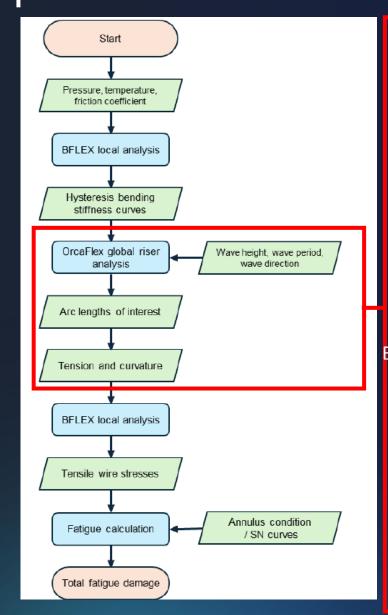

Step 0 - Calibration

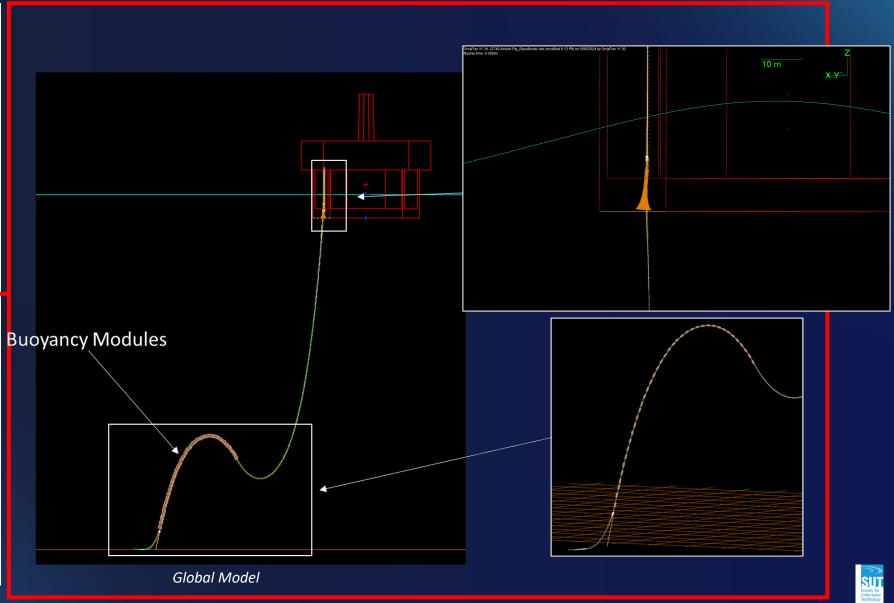
LOCAL MODEL


Calibration based on manufacturer's data

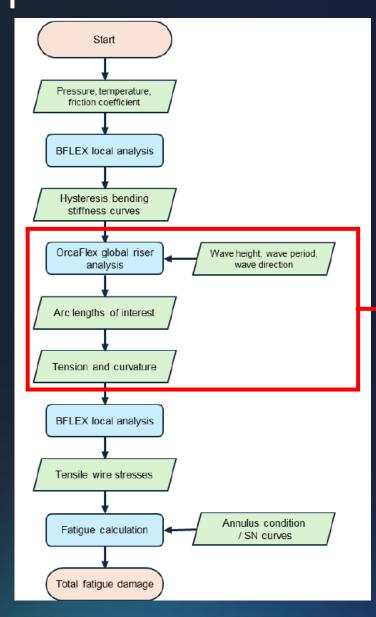

Step 1 - Stiffness Curves

LOCAL MODEL


- Determine hysteretic stiffness curves for 12 combinations:
 - Pressure: 24 / 20 / 16 MPa
 - Temperature: 130 / 100°C
 - Friction interlayers: 0.14 / 0.12



Step 2 – Global Dynamic Analysis



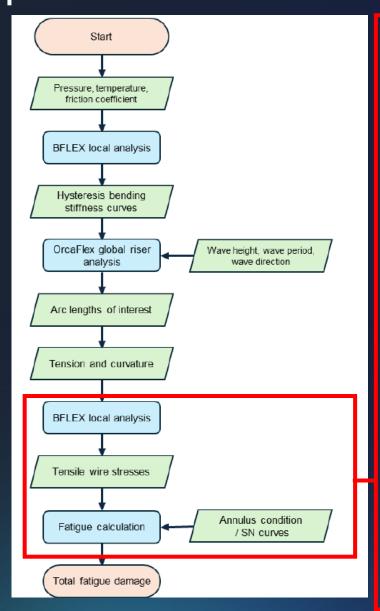
Step 2 – Global Dynamic Analysis

FOR EACH STIFFNESS CURVE

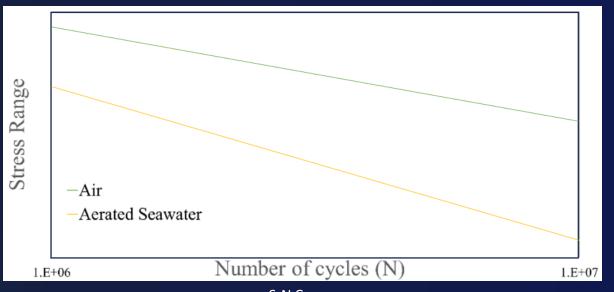
- All relevant H_s/T_p combinations
- 12 directions (30° increments)
- With and without steady current

≻10,896 runs

	Number of Cycles (log10)																										
T (s)	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	>28
1	7.4	7.5	7.5	7.5	7.4	7.2	7.0	6.8	6.5	6.3	6.0	5.7	5.4	5.1	4.8	4.5	4.2		3.6	3.3	3.0	2.7	2.4	2.0		1.2	1.0
2		6.6	7.0	7.3	7.5	7.5	7.3	7.2	7.0	6.7	6.5	6.2	5.9	5.6	5.3	5.0	4.7	4.4	4.0	3.7	3.4	3.0	2.7	2.3	1.9	1.5	1.2
3		5.4	6.1	6.6	6.9	7.1	7.1	7.0	6.8	6.6	6.4	6.1	5.9	5.6	5.2	4.9	4.6	4.2	3.9	3.5	3.1	2.8	2.4	2.0	1.6	1.1	0.9
4			5.2	5.9	6.3	6.6	6.7	6.7	6.6	6.4	6.2	6.0	5.7	5.4	5.1	4.8	4.4	4.1	3.7	3.3	2.9	2.5	2.1	1.7	1.2	0.8	0.5
5				5.1	5.7	6.1	6.3	6.3	6.3	6.1	6.0	5.7	5.5	5.2	4.9	4.6	4.2	3.9	3.5	3.1	2.7	2.3	1.9	1.5	1.0	0.5	0.0
6				4.4	5.1	5.5	5.8	5.9	6.0	5.9	5.7	5.5	5.2	5.0	4.7	4.4	4.0	3.7	3.3	2.9	2.5	2.1	1.7	1.3	0.8	0.5	0.0
7				3.6	4.4	5.0	5.4	5.6	5.6	5.6	5.5	5.3	5.0	4.7	4.4	4.1	3.8	3.4	3.1	2.7	2.3	1.9	1.5	1.1	0.7	0.3	0.0
8					3.8	4.5	4.9	5.2	5.3	5.3	5.2	5.0	4.8	4.5	4.2	3.9	3.5	3.2	2.8	2.4	2.0	1.7	1.3	0.8	0.5	0.0	- 1
9					3.1	3.9	4.5	4.8	5.0	5.0	4.9	4.8	4.6	4.3	4.0	3.7	3.3	2.9	2.5	2.2	1.8	1.4	1.0	0.6	0.3	0.0	- 1
10						3.4	4.0	4.4	4.6	4.7	4.7	4.5	4.3	4.1	3.8	3.4	3.1	2.7	2.3	1.9	1.5	1.1	0.7	0.3	0.0		- 1
11						2.9	3.5	4.0	4.3	4.4	4.4	4.3	4.1	3.9	3.5	3.2	2.8	2.4	2.0	1.6	1.2	0.8	0.3	0.0			-
12						2.3	3.1	3.6	3.9	4.1	4.1	4.1	3.9	3.6	3.3	3.0	2.6	2.2	1.8	1.4	1.0	0.5	0.0				-
13							2.6	3.2	3.6	3.8	3.9	3.8	3.6	3.4	3.1	2.8	2.4	2.0	1.6	1.1	0.7	0.3	0.0				l
14							2.1	2.8	3.2	3.5	3.6	3.5	3.4	3.2	2.9	2.6	2.2	1.8	1.4	0.9	0.5	0.0					l
15							1.6	2.3	2.8	3.1	3.3	3.3	3.2	3.0	2.7	2.4	2.0	1.6	1.1	0.7	0.3	0.0					l
16 17							1.1	1.9	2.5	2.8	3.0	3.0	2.9	2.7	2.5	2.2	1.8	1.4	1.0	0.5	0.0						- 1
18								1.5	2.1	2.5	2.7	2.7	2.7	2.5	2.3	2.0	1.6	1.2	0.7	0.3	0.0						- 1
19								1.0	1.7	1.8	2.4	2.5	2.4	2.3	1.8	1.7 1.5	1.4	1.0	0.5	0.0							ŀ
20								0.0	0.8	1.4	1.8	1.9	1.9	1.8	1.6	1.3	1.0	0.6	0.0	0.0							- 1
21								0.0	0.5	1.4	1.4	1.6	1.7	1.6	1.4	1.1	0.8	0.8	0.0								- 1
22									0.0	0.7	1.1	1.3	1.4	1.3	1.2	0.9	0.6	0.0	0.0								- 1
23									0.0	0.7	0.8	1.0	1.1	1.1	1.0	0.5	0.3	0.0									- 1
24										0.0	0.5	0.8	0.9	0.8	0.7	0.5	0.0	0.0									ł
25										0.0	0.0	0.5	0.6	0.6	0.5	0.3	0.0	0.0									1
26											0.0	0.0	0.3	0.3	0.3		0.0										- 1
27											0.0	0.0	0.0	0.0		0.0	0.0										- 1
28												0.0	0.0	0.0	0.0	0.0											
	_												0.0	0.0	0.0												


Fatigue Critical Zone

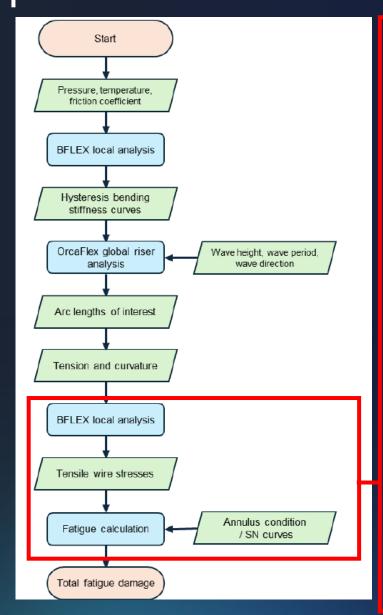
Yearly Metocean Data

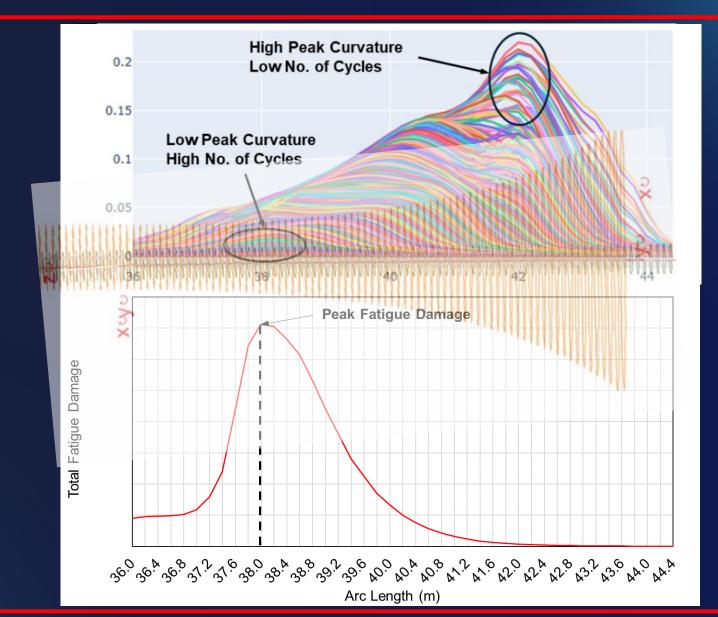

Atteris

Step 3 – Stress and Fatigue Damage

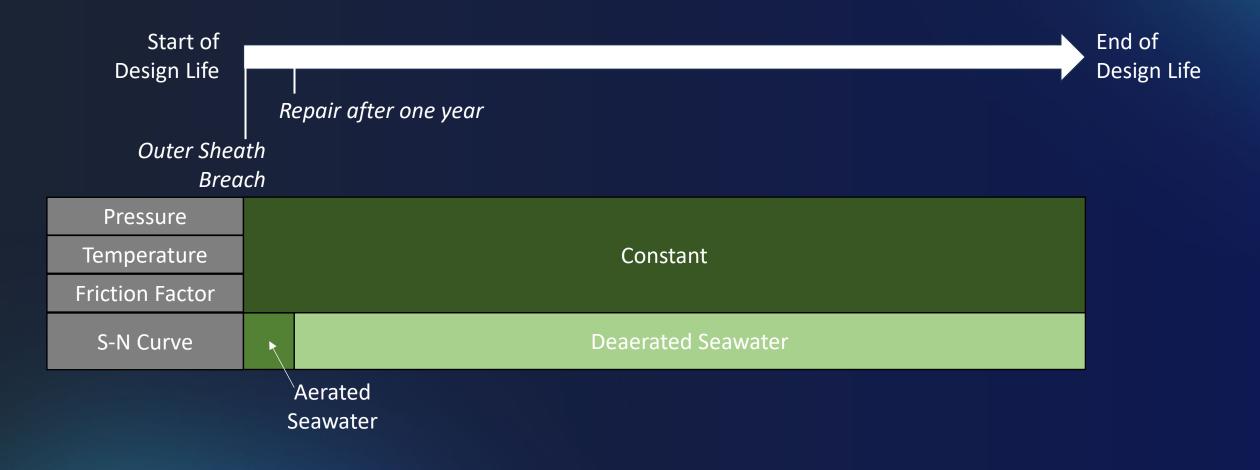
LOCAL MODEL

- Stresses calculated in the fatigue critical zone (457,632 runs)
- Fatigue damage from stress ranges using Miner's summation (59 million)
- Varying annulus conditions (before / after breach)
- Consider corrosion (cross section reduction)





Atteris


Step 3 – Stress and Fatigue Damage

Results – Breach on Year 1

Results – Breach on Year 1

Oper	ating Year	Cumulative Damage						
1 (breach)	0.01400						
	2	0.02488						
	3	0.03598						
	4	0.04729						
	5	0.05882 0.07057 0.08256						
	6							
	7							
	8	0.09477						
Fail Fatigue	9	0.10723						
Criterion	10	0.11993						
	11	0.13288						
	12	0.14608						
	13	0.15955						
	14	0.17328						
	15	0.18728						
	16	0.20157						
	17	0.21614						
	18	0.23100						
	19	0.24616						
	20	0.26162						
	21	0.27740						
	22	0.29349						
	23	0.30991						
	24	0.32667						
	25	0.34377						

Design Operating Conditions:

 Fatigue damage > 0.1 during the 9th operating year (safety factor of 10 as per API 17J)

Sensitivities:

- Friction factor (dry to wet): ~ 3 years improvement
- Steady current (mean): ~ 1 year improvement
- Internal pressure reduction: > 4 years improvement

Friction Factor	Current	Pressure (bar)	Operating Year 0.1 Damage Exceeded
0.14	None	240	9
0.12	None	240	12
0.14	Mean	240	10
0.14	None	200	13
0.14	None	160	19
0.12	Mean	200	19
0.12	Mean	160	>25

Atteris

Results – Year of Failure vs Internal Pressure

Results – Year of Failure vs Internal Pressure

Pressure reduces overtime

Decoals	Operating Year 0.1 Damage Exceeded									
Breach	240 Bar Post	200 Bar Post	160 Bar Post							
Occurrence	Breach	Breach	Breach							
Year 1	12	18	>25							
Year 2	13	19	>25							
Year 3	14	20	>25							
Year 4	15	21	>25							
Year 5	16	22	>25							
Year 6	17	23	>25							
Year 7	18	24	>25							
Year 8	19	>25	>25							
Year 9	20	>25	>25							
Year 10	21	>25	>25							
Year 11	22	>25	>25							
Year 12	23	>25	>25							
Year 13	24	>25	>25							
Year 14	>25	>25	>25							

Conclusions

- > Efficient way to assess fatigue performance of the riser and address client's concerns
- Method can be replicated for different configurations / cross-sections / locations

Key Success:

- Maximised study value by executing and post-processing a very large number of cases in a minimum time
- > Enables rapid sensitivity assessments (turnaround < 1 day once setup)

Insights:

- > The method presented allows for better understanding of the damage buildup in a riser.
- It can be used to estimate the actual service life compared to the design life
 - > Fatigue Optimisation
 - > System changes
- The manufacturer's recommended design envelope is typically conservative and method like the ones presented here allows to better understand how you are tracking compared to the "design" scenario

Thank You

Craig Booth

craig.booth@atteris.com

